IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.01490.html
   My bibliography  Save this paper

The option pricing model based on time values: an application of the universal approximation theory on unbounded domains

Author

Listed:
  • Yang Qu
  • Ming-Xi Wang

Abstract

We propose a time value related decision function to treat a classical option pricing problem raised by Hutchinson-Lo-Poggio. In numerical experiments, the new decision function significantly improves the original model of Hutchinson-Lo-Poggio with faster convergence and better generalization performance. By proving a novel universal approximation theorem, we show that our decision function rather than Hutchinson-Lo-Poggio's can be approximated on the entire domain of definition by neural networks. Thus the experimental results are partially explained by the representation properties of networks.

Suggested Citation

  • Yang Qu & Ming-Xi Wang, 2019. "The option pricing model based on time values: an application of the universal approximation theory on unbounded domains," Papers 1910.01490, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:1910.01490
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.01490
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    5. Nikola Gradojevic & Ramazan Gencay & Dragan Kukolj, 2009. "Option Pricing with Modular Neural Networks," Working Paper series 32_09, Rimini Centre for Economic Analysis.
    6. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    2. Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
    3. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    4. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    5. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    6. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
    7. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    8. Yuji Yamada, 2012. "Properties of Optimal Smooth Functions in Additive Models for Hedging Multivariate Derivatives," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(2), pages 149-179, May.
    9. Masanori Hirano & Kentaro Imajo & Kentaro Minami & Takuya Shimada, 2023. "Efficient Learning of Nested Deep Hedging using Multiple Options," Papers 2305.12264, arXiv.org.
    10. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    11. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    12. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    13. Jun Lu & Hiroshi Ohta, 2003. "A data and digital-contracts driven method for pricing complex derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 212-219.
    14. Nikola Gradojevic & Dragan Kukolj & Ramazan Gencay, 2011. "Clustering and Classification in Option Pricing," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 3(2), pages 109-128, October.
    15. Nikola Gradojevic, 2021. "Brexit and foreign exchange market expectations: Could it have been predicted?," Annals of Operations Research, Springer, vol. 297(1), pages 167-189, February.
    16. Anindya Goswami & Sharan Rajani & Atharva Tanksale, 2020. "Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning," Papers 2008.00462, arXiv.org, revised Dec 2020.
    17. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    18. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    19. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    20. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.01490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.