IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.05142.html
   My bibliography  Save this paper

Exponential stock models driven by tempered stable processes

Author

Listed:
  • Uwe Kuchler
  • Stefan Tappe

Abstract

We investigate exponential stock models driven by tempered stable processes, which constitute a rich family of purely discontinuous L\'{e}vy processes. With a view of option pricing, we provide a systematic analysis of the existence of equivalent martingale measures, under which the model remains analytically tractable. This includes the existence of Esscher martingale measures and martingale measures having minimal distance to the physical probability measure. Moreover, we provide pricing formulae for European call options and perform a case study.

Suggested Citation

  • Uwe Kuchler & Stefan Tappe, 2019. "Exponential stock models driven by tempered stable processes," Papers 1907.05142, arXiv.org.
  • Handle: RePEc:arx:papers:1907.05142
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.05142
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bianchi, Michele Leonardo & Rachev, Svetlozar T. & Kim, Young Shin & Fabozzi, Frank J., 2011. "Tempered infinitely divisible distributions and processes," Working Paper Series in Economics 26, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    2. Svetlana I. Boyarchenko & Sergei Z. Levendorskiǐ, 2000. "Option Pricing For Truncated Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 549-552.
    3. Küchler, Uwe & Tappe, Stefan, 2008. "On the shapes of bilateral Gamma densities," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2478-2484, October.
    4. Mercuri, Lorenzo, 2008. "Option pricing in a Garch model with tempered stable innovations," Finance Research Letters, Elsevier, vol. 5(3), pages 172-182, September.
    5. Christian Bender & Christina Niethammer, 2008. "On q-optimal martingale measures in exponential Lévy models," Finance and Stochastics, Springer, vol. 12(3), pages 381-410, July.
    6. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Kuchler & Stefan Tappe, 2019. "Tempered stable distributions and processes," Papers 1907.05141, arXiv.org.
    2. Küchler, Uwe & Tappe, Stefan, 2014. "Exponential stock models driven by tempered stable processes," Journal of Econometrics, Elsevier, vol. 181(1), pages 53-63.
    3. Küchler Uwe & Tappe Stefan, 2009. "Option pricing in bilateral Gamma stock models," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 281-307, December.
    4. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    5. Uwe Kuchler & Stefan Tappe, 2019. "Option pricing in bilateral Gamma stock models," Papers 1907.09862, arXiv.org.
    6. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    7. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    8. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    9. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    10. Yunfei Xia & Michael Grabchak, 2024. "Pricing multi-asset options with tempered stable distributions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-24, December.
    11. M A Sánchez-Granero & J E Trinidad-Segovia & J Clara-Rahola & A M Puertas & F J De las Nieves, 2017. "A model for foreign exchange markets based on glassy Brownian systems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    12. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    13. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    14. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    15. Grabchak, Michael, 2021. "An exact method for simulating rapidly decreasing tempered stable distributions in the finite variation case," Statistics & Probability Letters, Elsevier, vol. 170(C).
    16. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    17. Svetlana Boyarchenko & Sergei Levendorskii, 2005. "American options: the EPV pricing model," Annals of Finance, Springer, vol. 1(3), pages 267-292, August.
    18. Michail Anthropelos & Michael Kupper & Antonis Papapantoleon, 2015. "An equilibrium model for spot and forward prices of commodities," Papers 1502.00674, arXiv.org, revised Jan 2017.
    19. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    20. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.05142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.