IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1901.08280.html
   My bibliography  Save this paper

Temporal Logistic Neural Bag-of-Features for Financial Time series Forecasting leveraging Limit Order Book Data

Author

Listed:
  • Nikolaos Passalis
  • Anastasios Tefas
  • Juho Kanniainen
  • Moncef Gabbouj
  • Alexandros Iosifidis

Abstract

Time series forecasting is a crucial component of many important applications, ranging from forecasting the stock markets to energy load prediction. The high-dimensionality, velocity and variety of the data collected in these applications pose significant and unique challenges that must be carefully addressed for each of them. In this work, a novel Temporal Logistic Neural Bag-of-Features approach, that can be used to tackle these challenges, is proposed. The proposed method can be effectively combined with deep neural networks, leading to powerful deep learning models for time series analysis. However, combining existing BoF formulations with deep feature extractors pose significant challenges: the distribution of the input features is not stationary, tuning the hyper-parameters of the model can be especially difficult and the normalizations involved in the BoF model can cause significant instabilities during the training process. The proposed method is capable of overcoming these limitations by a employing a novel adaptive scaling mechanism and replacing the classical Gaussian-based density estimation involved in the regular BoF model with a logistic kernel. The effectiveness of the proposed approach is demonstrated using extensive experiments on a large-scale financial time series dataset that consists of more than 4 million limit orders.

Suggested Citation

  • Nikolaos Passalis & Anastasios Tefas & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Temporal Logistic Neural Bag-of-Features for Financial Time series Forecasting leveraging Limit Order Book Data," Papers 1901.08280, arXiv.org.
  • Handle: RePEc:arx:papers:1901.08280
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1901.08280
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
    2. Yann LeCun & Yoshua Bengio & Geoffrey Hinton, 2015. "Deep learning," Nature, Nature, vol. 521(7553), pages 436-444, May.
    3. Alec N. Kercheval & Yuan Zhang, 2015. "Modelling high-frequency limit order book dynamics with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1315-1329, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilia Zaznov & Julian Kunkel & Alfonso Dufour & Atta Badii, 2022. "Predicting Stock Price Changes Based on the Limit Order Book: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-33, April.
    2. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    3. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2020. "Mid-price prediction based on machine learning methods with technical and quantitative indicators," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-39, June.
    4. Ymir Mäkinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2033-2050, December.
    5. Martin Magris & Mostafa Shabani & Alexandros Iosifidis, 2022. "Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets," Papers 2203.03613, arXiv.org, revised Jan 2023.
    6. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    7. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators," Papers 1907.09452, arXiv.org.
    8. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    9. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    10. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    11. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    12. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    13. Dat Thanh Tran & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Data-driven Neural Architecture Learning For Financial Time-series Forecasting," Papers 1903.06751, arXiv.org.
    14. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    15. Qiang Zhang & Rui Luo & Yaodong Yang & Yuanyuan Liu, 2018. "Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series," Papers 1811.03711, arXiv.org.
    16. Crane-Droesch, Andrew, 2017. "Semiparametric Panel Data Using Neural Networks," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258128, Agricultural and Applied Economics Association.
    17. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    18. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    19. Nikolaos Passalis & Anastasios Tefas & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Deep Adaptive Input Normalization for Time Series Forecasting," Papers 1902.07892, arXiv.org, revised Sep 2019.
    20. Zhaofeng Zhang & Banghao Chen & Shengxin Zhu & Nicolas Langren'e, 2024. "From attention to profit: quantitative trading strategy based on transformer," Papers 2404.00424, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1901.08280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.