IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.08706.html
   My bibliography  Save this paper

A sparse grid approach to balance sheet risk measurement

Author

Listed:
  • Cyril B'en'ezet
  • J'er'emie Bonnefoy
  • Jean-Franc{c}ois Chassagneux
  • Shuoqing Deng
  • Camilo Garcia Trillos
  • Lionel Len^otre

Abstract

In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & Scholes model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.

Suggested Citation

  • Cyril B'en'ezet & J'er'emie Bonnefoy & Jean-Franc{c}ois Chassagneux & Shuoqing Deng & Camilo Garcia Trillos & Lionel Len^otre, 2018. "A sparse grid approach to balance sheet risk measurement," Papers 1811.08706, arXiv.org.
  • Handle: RePEc:arx:papers:1811.08706
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.08706
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sripad Motiram & Vamsi Vakulabharanam, 2020. "Intra-City Inequalities, Neighborhoods and Economic Development," Working Papers 2020-01, University of Massachusetts Boston, Economics Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    2. Nteukam T., Oberlain & Planchet, Frédéric, 2012. "Stochastic evaluation of life insurance contracts: Model point on asset trajectories and measurement of the error related to aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 624-631.
    3. Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
    4. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
    5. Matthieu Chauvigny & Laurent Devineau & Stéphane Loisel & Véronique Maume-Deschamps, 2011. "Fast remote but not extreme quantiles with multiple factors. Applications to Solvency II and Enterprise Risk Management," Post-Print hal-00517766, HAL.
    6. Mingbin Ben Feng & Eunhye Song, 2020. "Optimal Nested Simulation Experiment Design via Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised Jul 2021.
    7. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    8. Anne-Sophie Krah & Zoran Nikoli'c & Ralf Korn, 2019. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Papers 1909.02182, arXiv.org.
    9. Christian Wei{ss} & Zoran Nikoli'c, 2018. "An Aspect of Optimal Regression Design for LSMC," Papers 1811.08509, arXiv.org, revised May 2019.
    10. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    11. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    12. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    13. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    14. Bruno Bouchard & Adil Reghai & Benjamin Virrion, 2020. "Computation of Expected Shortfall by fast detection of worst scenarios," Papers 2005.12593, arXiv.org.
    15. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    16. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    17. Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
    18. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    19. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    20. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.08706. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.