IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i3d10.1007_s11009-019-09751-3.html
   My bibliography  Save this article

Weak Error for Nested Multilevel Monte Carlo

Author

Listed:
  • Daphné Giorgi

    (Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM))

  • Vincent Lemaire

    (Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM))

  • Gilles Pagès

    (Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM))

Abstract

This article discusses MLMC estimators with and without weights, applied to nested expectations of the form Ef(EF(Y,Z)|Y ). More precisely, we are interested on the assumptions needed to comply with the MLMC framework, depending on whether the payoff function f is smooth or not. A new result to our knowledge is given when f is not smooth in the development of the weak error at an order higher than 1, which is needed for a successful use of MLMC estimators with weights.

Suggested Citation

  • Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:3:d:10.1007_s11009-019-09751-3
    DOI: 10.1007/s11009-019-09751-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09751-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09751-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    2. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    3. K. Bujok & B. M. Hambly & C. Reisinger, 2015. "Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 579-604, September.
    4. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    2. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    3. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    2. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    3. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    4. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org.
    5. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    6. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    7. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    8. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    9. Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
    10. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    11. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
    12. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    13. St'ephane Cr'epey & Noufel Frikha & Azar Louzi, 2023. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Papers 2304.01207, arXiv.org.
    14. Michael B. Giles & Francisco Bernal, 2017. "Multilevel estimation of expected exit times and other functionals of stopped diffusions," Papers 1710.07492, arXiv.org, revised Sep 2018.
    15. Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
    16. Stéphane Crépey & Noufel Frikha & Azar Louzi, 2023. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04037328, HAL.
    17. Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Nested Multilevel Monte Carlo with Biased and Antithetic Sampling," Papers 2308.07835, arXiv.org.
    18. Michael B. Giles & Kristian Debrabant & Andreas Ro{ss}ler, 2013. "Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation," Papers 1302.4676, arXiv.org, revised Jun 2019.
    19. Giorgi Daphné & Lemaire Vincent & Pagès Gilles, 2017. "Limit theorems for weighted and regular Multilevel estimators," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 43-70, March.
    20. Hideyuki Tanaka & Toshihiro Yamada, 2013. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method (Forthcoming in "International Journal of Theoretical and Applied Finance")," CARF F-Series CARF-F-333, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:3:d:10.1007_s11009-019-09751-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.