IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.14549.html
   My bibliography  Save this paper

Multilevel Monte Carlo and its Applications in Financial Engineering

Author

Listed:
  • Devang Sinha
  • Siddhartha P. Chakrabarty

Abstract

In this article, we present a review of the recent developments on the topic of Multilevel Monte Carlo (MLMC) algorithm, in the paradigm of applications in financial engineering. We specifically focus on the recent studies conducted in two subareas, namely, option pricing and financial risk management. For the former, the discussion involves incorporation of the importance sampling algorithm, in conjunction with the MLMC estimator, thereby constructing a hybrid algorithm in order to achieve reduction for the overall variance of the estimator. In case of the latter, we discuss the studies carried out in order to construct an efficient algorithm in order to estimate the risk measures of Value-at-Risk (VaR) and Conditional Var (CVaR), in an efficient manner. In this regard, we briefly discuss the motivation and the construction of an adaptive sampling algorithm with an aim to efficiently estimate the nested expectation, which, in general is computationally expensive.

Suggested Citation

  • Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.
  • Handle: RePEc:arx:papers:2209.14549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.14549
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 611-641, June.
    2. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    3. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    4. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    5. Michael B. Giles & Lukasz Szpruch, 2012. "Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L\'{e}vy area simulation," Papers 1202.6283, arXiv.org, revised May 2014.
    6. Denis Belomestny & John Schoenmakers & Fabian Dickmann, 2013. "Multilevel dual approach for pricing American style derivatives," Finance and Stochastics, Springer, vol. 17(4), pages 717-742, October.
    7. Lelong, Jérôme, 2008. "Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2632-2636, November.
    8. Chen, Han-Fu & Guo, Lei & Gao, Ai-Jun, 1987. "Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds," Stochastic Processes and their Applications, Elsevier, vol. 27, pages 217-231.
    9. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.
    10. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    11. Michael B. Giles & Abdul-Lateef Haji-Ali, 2018. "Multilevel nested simulation for efficient risk estimation," Papers 1802.05016, arXiv.org, revised Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.
    2. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org.
    3. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    4. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    5. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    6. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    7. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    8. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    9. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    10. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    11. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    12. St'ephane Cr'epey & Noufel Frikha & Azar Louzi, 2023. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Papers 2304.01207, arXiv.org.
    13. Stéphane Crépey & Noufel Frikha & Azar Louzi, 2023. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04037328, HAL.
    14. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    15. Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Nested Multilevel Monte Carlo with Biased and Antithetic Sampling," Papers 2308.07835, arXiv.org.
    16. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    17. Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.
    18. Mouna Ben Derouich & Ahmed Kebaier, 2022. "The interpolated drift implicit Euler scheme Multilevel Monte Carlo method for pricing Barrier options and applications to the CIR and CEV models," Papers 2210.00779, arXiv.org.
    19. Ahmed Kebaier & Jérôme Lelong, 2017. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Working Papers hal-01214840, HAL.
    20. Yasa Syed & Guanyang Wang, 2023. "Optimal randomized multilevel Monte Carlo for repeatedly nested expectations," Papers 2301.04095, arXiv.org, revised May 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.14549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.