IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1811.05567.html
   My bibliography  Save this paper

Estimation of High-Dimensional Seemingly Unrelated Regression Models

Author

Listed:
  • Lidan Tan
  • Khai X. Chiong
  • Hyungsik Roger Moon

Abstract

In this paper, we investigate seemingly unrelated regression (SUR) models that allow the number of equations (N) to be large, and to be comparable to the number of the observations in each equation (T). It is well known in the literature that the conventional SUR estimator, for example, the generalized least squares (GLS) estimator of Zellner (1962) does not perform well. As the main contribution of the paper, we propose a new feasible GLS estimator called the feasible graphical lasso (FGLasso) estimator. For a feasible implementation of the GLS estimator, we use the graphical lasso estimation of the precision matrix (the inverse of the covariance matrix of the equation system errors) assuming that the underlying unknown precision matrix is sparse. We derive asymptotic theories of the new estimator and investigate its finite sample properties via Monte-Carlo simulations.

Suggested Citation

  • Lidan Tan & Khai X. Chiong & Hyungsik Roger Moon, 2018. "Estimation of High-Dimensional Seemingly Unrelated Regression Models," Papers 1811.05567, arXiv.org.
  • Handle: RePEc:arx:papers:1811.05567
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1811.05567
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    2. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    3. Li, Quan & Reuveny, Rafael, 2003. "Economic Globalization and Democracy: An Empirical Analysis," British Journal of Political Science, Cambridge University Press, vol. 33(1), pages 29-54, January.
    4. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
    2. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    3. Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
    4. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    5. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    6. Luo, Shan & Chen, Zehua, 2014. "Edge detection in sparse Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 138-152.
    7. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    8. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
    9. Zamar, Rubén, 2015. "Ranking Edges and Model Selection in High-Dimensional Graphs," DES - Working Papers. Statistics and Econometrics. WS ws1511, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    11. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    12. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    13. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    14. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.
    15. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    16. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    17. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    18. Chen, Shuo & Kang, Jian & Xing, Yishi & Zhao, Yunpeng & Milton, Donald K., 2018. "Estimating large covariance matrix with network topology for high-dimensional biomedical data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 82-95.
    19. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
    20. Jie Cheng & Elizaveta Levina & Pei Wang & Ji Zhu, 2014. "A sparse ising model with covariates," Biometrics, The International Biometric Society, vol. 70(4), pages 943-953, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.05567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.