IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.06728.html
   My bibliography  Save this paper

Dynamical variety of shapes in financial multifractality

Author

Listed:
  • Stanis{l}aw Dro.zd.z
  • Rafa{l} Kowalski
  • Pawe{l} O'swic{e}cimka
  • Rafa{l} Rak
  • Robert Gc{e}barowski

Abstract

The concept of multifractality offers a powerful formal tool to filter out multitude of the most relevant characteristics of complex time series. The related studies thus far presented in the scientific literature typically limit themselves to evaluation of whether or not a time series is multifractal and width of the resulting singularity spectrum is considered a measure of the degree of complexity involved. However, the character of the complexity of time series generated by the natural processes usually appears much more intricate than such a bare statement can reflect. As an example, based on the long-term records of S&P500 and NASDAQ - the two world leading stock market indices - the present study shows that they indeed develop the multifractal features, but these features evolve through a variety of shapes, most often strongly asymmetric, whose changes typically are correlated with the historically most significant events experienced by the world economy. Relating at the same time the index multifractal singularity spectra to those of the component stocks that form this index reflects the varying degree of correlations involved among the stocks.

Suggested Citation

  • Stanis{l}aw Dro.zd.z & Rafa{l} Kowalski & Pawe{l} O'swic{e}cimka & Rafa{l} Rak & Robert Gc{e}barowski, 2018. "Dynamical variety of shapes in financial multifractality," Papers 1809.06728, arXiv.org.
  • Handle: RePEc:arx:papers:1809.06728
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.06728
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen, Damian G. & Dixon, James A., 2011. "Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 160-168.
    2. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    3. Drożdż, S & Grümmer, F & Górski, A.Z & Ruf, F & Speth, J, 2000. "Dynamics of competition between collectivity and noise in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 440-449.
    4. P. Oswiecimka & J. Kwapien & S. Drozdz & A. Z. Gorski & R. Rak, 2006. "Multifractal Model of Asset Returns versus real stock market dynamics," Papers physics/0605147, arXiv.org, revised Aug 2006.
    5. Grech, Dariusz, 2016. "Alternative measure of multifractal content and its application in finance," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 183-195.
    6. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    7. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    8. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    9. J. Perello & J. Masoliver & A. Kasprzak & R. Kutner, 2008. "A model for interevent times with long tails and multifractality in human communications: An application to financial trading," Papers 0805.1353, arXiv.org, revised Jul 2008.
    10. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    11. Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka & Rafal Rak, 2010. "The foreign exchange market: return distributions, multifractality, anomalous multifractality and Epps effect," Papers 1011.2385, arXiv.org.
    12. Drożdż, S. & Forczek, M. & Kwapień, J. & Oświe¸cimka, P. & Rak, R., 2007. "Stock market return distributions: From past to present," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 59-64.
    13. Czarnecki, Łukasz & Grech, Dariusz & Pamuła, Grzegorz, 2008. "Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6801-6811.
    14. Stephen, Damian G. & Hsu, Wen-Hao & Young, Diana & Saltzman, Elliot L. & Holt, Kenneth G. & Newman, Dava J. & Weinberg, Marc & Wood, Robert J. & Nagpal, Radhika & Goldfield, Eugene C., 2012. "Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1201-1219.
    15. S. Drozdz & J. Kwapien & F. Gruemmer & F. Ruf & J. Speth, 2001. "Quantifying dynamics of the financial correlations," Papers cond-mat/0102402, arXiv.org.
    16. Ghosh, Dipak & Dutta, Srimonti & Chakraborty, Sayantan, 2014. "Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 1-10.
    17. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    18. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    19. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    20. Selçuk Bayraci, 2018. "Testing for multi-fractality and efficiency in selected sovereign bond markets: a multi-fractal detrended moving average (MF-DMA) analysis," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(1), pages 95-120.
    21. Drożdż, S. & Kwapień, J. & Grümmer, F. & Ruf, F. & Speth, J., 2001. "Quantifying the dynamics of financial correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 144-153.
    22. Stephen, Damian G. & Stepp, Nigel & Dixon, James A. & Turvey, M.T., 2008. "Strong anticipation: Sensitivity to long-range correlations in synchronization behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5271-5278.
    23. S. Drozdz & M. Forczek & J. Kwapien & P. Oswiecimka & R. Rak, 2007. "Stock market return distributions: from past to present," Papers 0704.0664, arXiv.org.
    24. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    25. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    26. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    27. Turiel, Antonio & Pérez-Vicente, Conrad J., 2005. "Role of multifractal sources in the analysis of stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 475-496.
    28. Drożdż, S. & Grümmer, F. & Ruf, F. & Speth, J., 2003. "Log-periodic self-similarity: an emerging financial law?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 174-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    2. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale multifractal analysis on air traffic flow time series: A single airport departure flight case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Molina-Muñoz, Jesús & Mora-Valencia, Andrés & Perote, Javier, 2020. "Market-crash forecasting based on the dynamics of the alpha-stable distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Gómez-Gómez, Javier & Carmona-Cabezas, Rafael & Ariza-Villaverde, Ana B. & Gutiérrez de Ravé, Eduardo & Jiménez-Hornero, Francisco José, 2021. "Multifractal detrended fluctuation analysis of temperature in Spain (1960–2019)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    7. Antoniades, I.P. & Karakatsanis, L.P. & Pavlos, E.G., 2021. "Dynamical characteristics of global stock markets based on time dependent Tsallis non-extensive statistics and generalized Hurst exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    8. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Li, Songsong & Xu, Nan & Hui, Xiaofeng, 2020. "International investors and the multifractality property: Evidence from accessible and inaccessible market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Marcin Wk{a}torek & Marcin Kr'olczyk & Jaros{l}aw Kwapie'n & Tomasz Stanisz & Stanis{l}aw Dro.zd.z, 2024. "Approaching multifractal complexity in decentralized cryptocurrency trading," Papers 2411.05951, arXiv.org.
    11. Meraz, M. & Alvarez-Ramirez, J. & Rodriguez, E., 2022. "Multivariate rescaled range analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Luca Di Persio & Tamirat Temesgen Dufera, 2024. "Deep Neural Network Model for Hurst Exponent: Learning from R/S Analysis," Mathematics, MDPI, vol. 12(22), pages 1-26, November.
    13. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    14. Shi, Yong & Li, Bo & Du, Guangle & Dai, Wei, 2021. "Clustering framework based on multi-scale analysis of intraday financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    15. Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.
    16. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    17. Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
    18. Iqbal, Javid & Saeed, Abubakr, 2023. "Managerial sentiments, non-performing loans, and banks financial performance: A causal mediation approach," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Rodriguez, E. & Alvarez-Ramirez, J., 2021. "Time-varying cross-correlation between trading volume and returns in US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    21. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    2. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    4. Stanisław Drożdż & Ludovico Minati & Paweł Oświȩcimka & Marek Stanuszek & Marcin Wa̧torek, 2019. "Signatures of the Crypto-Currency Market Decoupling from the Forex," Future Internet, MDPI, vol. 11(7), pages 1-18, July.
    5. Mali, Provash & Mukhopadhyay, Amitabha, 2014. "Multifractal characterization of gold market: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 361-372.
    6. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    7. Provash Mali & Amitabha Mukhopadhyay, 2015. "Multifractal characterization of gold market: a multifractal detrended fluctuation analysis," Papers 1506.08847, arXiv.org.
    8. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    9. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Pawe{l} O'swic{e}cimka & Marek Stanuszek, 2018. "Multifractal cross-correlations between the World Oil and other Financial Markets in 2012-2017," Papers 1812.08548, arXiv.org, revised Jun 2019.
    10. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    11. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    12. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    14. Robert Gk{e}barowski & Pawe{l} O'swik{e}cimka & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2019. "Detecting correlations and triangular arbitrage opportunities in the Forex by means of multifractal detrended cross-correlations analysis," Papers 1906.07491, arXiv.org, revised Oct 2019.
    15. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    16. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    17. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Jammazi, Rania, 2018. "Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 337-349.
    18. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    19. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    20. Maganini, Natália Diniz & Da Silva Filho, Antônio Carlos & Lima, Fabiano Guasti, 2018. "Investigation of multifractality in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 258-271.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.06728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.