IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.00096.html
   My bibliography  Save this paper

Synthetic Control Methods and Big Data

Author

Listed:
  • Daniel Kinn

Abstract

Many macroeconomic policy questions may be assessed in a case study framework, where the time series of a treated unit is compared to a counterfactual constructed from a large pool of control units. I provide a general framework for this setting, tailored to predict the counterfactual by minimizing a tradeoff between underfitting (bias) and overfitting (variance). The framework nests recently proposed structural and reduced form machine learning approaches as special cases. Furthermore, difference-in-differences with matching and the original synthetic control are restrictive cases of the framework, in general not minimizing the bias-variance objective. Using simulation studies I find that machine learning methods outperform traditional methods when the number of potential controls is large or the treated unit is substantially different from the controls. Equipped with a toolbox of approaches, I revisit a study on the effect of economic liberalisation on economic growth. I find effects for several countries where no effect was found in the original study. Furthermore, I inspect how a systematically important bank respond to increasing capital requirements by using a large pool of banks to estimate the counterfactual. Finally, I assess the effect of a changing product price on product sales using a novel scanner dataset.

Suggested Citation

  • Daniel Kinn, 2018. "Synthetic Control Methods and Big Data," Papers 1803.00096, arXiv.org.
  • Handle: RePEc:arx:papers:1803.00096
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.00096
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    2. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2015. "Comparative Politics and the Synthetic Control Method," American Journal of Political Science, John Wiley & Sons, vol. 59(2), pages 495-510, February.
    3. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    5. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    6. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    7. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    8. Giovanni Peri & Vasil Yasenov, 2015. "The Labor Market Effects of a Refugee Wave: Applying the Synthetic Control Method to the Mariel Boatlift," NBER Working Papers 21801, National Bureau of Economic Research, Inc.
    9. Andreas Billmeier & Tommaso Nannicini, 2013. "Assessing Economic Liberalization Episodes: A Synthetic Control Approach," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 983-1001, July.
    10. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    11. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    12. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    13. Kaul, Ashok & Klößner, Stefan & Pfeifer, Gregor & Schieler, Manuel, 2015. "Synthetic Control Methods: Never Use All Pre-Intervention Outcomes Together With Covariates," MPRA Paper 83790, University Library of Munich, Germany.
    14. Alexis Diamond & Jasjeet S. Sekhon, 2013. "Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 932-945, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph F. Kurz & Martin Rehm & Rolf Holle & Christina Teuner & Michael Laxy & Larissa Schwarzkopf, 2019. "The effect of bariatric surgery on health care costs: A synthetic control approach using Bayesian structural time series," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1293-1307, November.
    2. Martin-Shields, Charles P. & Stojetz, Wolfgang, 2019. "Food security and conflict: Empirical challenges and future opportunities for research and policy making on food security and conflict," World Development, Elsevier, vol. 119(C), pages 150-164.
    3. WASHIMI Kazuaki, 2021. "Venture Capital and Startup Innovation --Big Data Analysis of Patent Data--," Bank of Japan Research Papers 21-03-12, Bank of Japan.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    2. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    3. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    4. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Mar 2024.
    5. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2021. "Decoupling synthetic control methods to ensure stability, accuracy and meaningfulness," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 549-584, December.
    6. Klößner, Stefan & Pfeifer, Gregor, 2015. "Synthesizing Cash for Clunkers: Stabilizing the Car Market, Hurting the Environment," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113207, Verein für Socialpolitik / German Economic Association.
    7. Christoph F. Kurz & Martin Rehm & Rolf Holle & Christina Teuner & Michael Laxy & Larissa Schwarzkopf, 2019. "The effect of bariatric surgery on health care costs: A synthetic control approach using Bayesian structural time series," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1293-1307, November.
    8. Samuel Verevis & Murat Üngör, 2021. "What has New Zealand gained from The FTA with China?: Two counterfactual analyses†," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(1), pages 20-50, February.
    9. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2020. "Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method," IREA Working Papers 202005, University of Barcelona, Research Institute of Applied Economics, revised Apr 2020.
    10. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    11. Lea Bottmer & Guido Imbens & Jann Spiess & Merrill Warnick, 2021. "A Design-Based Perspective on Synthetic Control Methods," Papers 2101.09398, arXiv.org, revised Jul 2023.
    12. Alice Lépissier & Matto Mildenberger, 2021. "Unilateral climate policies can substantially reduce national carbon pollution," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    13. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    14. Pier Basaglia & Sophie Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: How Tax Salience and Fuel Substitution Mediate Climate and Health Benefits," Discussion Papers of DIW Berlin 2041, DIW Berlin, German Institute for Economic Research.
    15. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    16. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    17. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    18. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    19. Guillaume Allaire Pouliot & Zhen Xie, 2022. "Degrees of Freedom and Information Criteria for the Synthetic Control Method," Papers 2207.02943, arXiv.org.
    20. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: Causal Effects of Fuel Taxation and Mediating Mechanisms for Reducing Climate and Pollution Costs," CESifo Working Paper Series 10508, CESifo.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.00096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.