IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.10244.html
   My bibliography  Save this paper

RACORN-K: Risk-Aversion Pattern Matching-based Portfolio Selection

Author

Listed:
  • Yang Wang
  • Dong Wang
  • Yaodong Wang
  • You Zhang

Abstract

Portfolio selection is the central task for assets management, but it turns out to be very challenging. Methods based on pattern matching, particularly the CORN-K algorithm, have achieved promising performance on several stock markets. A key shortage of the existing pattern matching methods, however, is that the risk is largely ignored when optimizing portfolios, which may lead to unreliable profits, particularly in volatile markets. We present a risk-aversion CORN-K algorithm, RACORN-K, that penalizes risk when searching for optimal portfolios. Experiments on four datasets (DJIA, MSCI, SP500(N), HSI) demonstrate that the new algorithm can deliver notable and reliable improvements in terms of return, Sharp ratio and maximum drawdown, especially on volatile markets.

Suggested Citation

  • Yang Wang & Dong Wang & Yaodong Wang & You Zhang, 2018. "RACORN-K: Risk-Aversion Pattern Matching-based Portfolio Selection," Papers 1802.10244, arXiv.org.
  • Handle: RePEc:arx:papers:1802.10244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.10244
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    2. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    3. László Györfi & Gábor Lugosi & Frederic Udina, 2006. "Nonparametric Kernel‐Based Sequential Investment Strategies," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 337-357, April.
    4. Györfi László & Udina Frederic & Walk Harro, 2008. "Nonparametric nearest neighbor based empirical portfolio selection strategies," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 145-157, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    2. Vajda, István & Ottucsák, György, 2006. "Empirikus portfólióstratégiák [Empirical portfolio strategies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 624-640.
    3. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    4. Guy Uziel & Ran El-Yaniv, 2017. "Growth-Optimal Portfolio Selection under CVaR Constraints," Papers 1705.09800, arXiv.org.
    5. Seung-Hyun Moon & Yong-Hyuk Kim & Byung-Ro Moon, 2019. "Empirical investigation of state-of-the-art mean reversion strategies for equity markets," Papers 1909.04327, arXiv.org.
    6. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    7. Ting-Kam Leonard Wong, 2015. "Universal portfolios in stochastic portfolio theory," Papers 1510.02808, arXiv.org, revised Dec 2016.
    8. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    9. Tim Gebbie & Fayyaaz Loonat, 2016. "Learning zero-cost portfolio selection with pattern matching," Papers 1605.04600, arXiv.org.
    10. Ottucsák György & Vajda István, 2007. "An asymptotic analysis of the mean-variance portfolio selection," Statistics & Risk Modeling, De Gruyter, vol. 25(1/2007), pages 1-24, January.
    11. Andrey Kudryavtsev, 2012. "Short-Term Stock Price Reversals May Be Reversed," International Journal of Business and Economic Sciences Applied Research (IJBESAR), International Hellenic University (IHU), Kavala Campus, Greece (formerly Eastern Macedonia and Thrace Institute of Technology - EMaTTech), vol. 5(3), pages 129-146, December.
    12. Avanidhar Subrahmanyam, 2008. "Behavioural Finance: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 14(1), pages 12-29, January.
    13. Allaudeen Hameed & Randall Morck & Jianfeng Shen & Bernard Yeung, 2015. "Information, Analysts, and Stock Return Comovement," Review of Financial Studies, Society for Financial Studies, vol. 28(11), pages 3153-3187.
    14. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    15. Nam, Kiseok & Pyun, Chong Soo & Kim, Sei-Wan, 2003. "Is asymmetric mean-reverting pattern in stock returns systematic? Evidence from Pacific-basin markets in the short-horizon," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 13(5), pages 481-502, December.
    16. Pernagallo, Giuseppe & Torrisi, Benedetto, 2020. "Blindfolded monkeys or financial analysts: Who is worth your money? New evidence on informational inefficiencies in the U.S. stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    17. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    18. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    19. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    20. Cornelis A. Los, 2004. "Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data," Finance 0409033, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.10244. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.