IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.03874.html
   My bibliography  Save this paper

Analysis of the nonlinear option pricing model under variable transaction costs

Author

Listed:
  • Daniel Sevcovic
  • Magdalena Zitnanska

Abstract

In this paper we analyze a nonlinear Black--Scholes model for option pricing under variable transaction costs. The diffusion coefficient of the nonlinear parabolic equation for the price $V$ is assumed to be a function of the underlying asset price and the Gamma of the option. We show that the generalizations of the classical Black--Scholes model can be analyzed by means of transformation of the fully nonlinear parabolic equation into a quasilinear parabolic equation for the second derivative of the option price. We show existence of a classical smooth solution and prove useful bounds on the option prices. Furthermore, we construct an effective numerical scheme for approximation of the solution. The solutions are obtained by means of the efficient numerical discretization scheme of the Gamma equation. Several computational examples are presented.

Suggested Citation

  • Daniel Sevcovic & Magdalena Zitnanska, 2016. "Analysis of the nonlinear option pricing model under variable transaction costs," Papers 1603.03874, arXiv.org.
  • Handle: RePEc:arx:papers:1603.03874
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.03874
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Naoyuki Ishimura, 2010. "Remarks on the Nonlinear Black-Scholes Equations with the Effect of Transaction Costs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 241-259, September.
    3. Sona Kilianova & Daniel Sevcovic, 2013. "Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem," Papers 1307.3672, arXiv.org, revised Jul 2013.
    4. Peter Grandits & Werner Schachinger, 2001. "Leland's Approach to Option Pricing: The Evolution of a Discontinuity," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 347-355, July.
    5. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    6. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, January.
    7. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374, October.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations," Papers 1707.00356, arXiv.org.
    5. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.
    6. Maria do Rosario Grossinho & Yaser Kord Faghan & Daniel Sevcovic, 2016. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1611.00885, arXiv.org, revised Nov 2017.
    7. Maria do Rosário Grossinho & Yaser Kord Faghan & Daniel Ševčovič, 2017. "Pricing Perpetual Put Options by the Black–Scholes Equation with a Nonlinear Volatility Function," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(4), pages 291-308, December.
    8. Karol Duris & Shih-Hau Tan & Choi-Hong Lai & Daniel Sevcovic, 2015. "Comparison of the analytical approximation formula and Newton's method for solving a class of nonlinear Black-Scholes parabolic equations," Papers 1511.05661, arXiv.org, revised Nov 2015.
    9. Daniel Sevcovic & Cyril Izuchukwu Udeani, 2021. "Multidimensional linear and nonlinear partial integro-differential equation in Bessel potential spaces with applications in option pricing," Papers 2106.10498, arXiv.org.
    10. Daniel Ševčovič & Cyril Izuchukwu Udeani, 2021. "Multidimensional Linear and Nonlinear Partial Integro-Differential Equation in Bessel Potential Spaces with Applications in Option Pricing," Mathematics, MDPI, vol. 9(13), pages 1-12, June.
    11. Virginia R. Young, 2004. "Pricing In An Incomplete Market With An Affine Term Structure," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 359-381, July.
    12. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/19, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    13. Kristoffer Glover & Peter W Duck & David P Newton, 2010. "On nonlinear models of markets with finite liquidity: Some cautionary notes," Published Paper Series 2010-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    14. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1707.00358, arXiv.org, revised Jun 2018.
    15. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    16. Daniel Sevcovic, 2017. "Nonlinear Parabolic Equations arising in Mathematical Finance," Papers 1707.01436, arXiv.org.
    17. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    18. Thai Huu Nguyen & Serguei Pergamenshchikov, 2015. "Approximate hedging problem with transaction costs in stochastic volatility markets," Papers 1505.02546, arXiv.org.
    19. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2012. "Approximate hedging problem with transaction costs in stochastic volatility markets," Working Papers hal-00808608, HAL.
    20. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.03874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.