IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.6531.html
   My bibliography  Save this paper

Credit acceptance process strategy case studies - the power of Credit Scoring

Author

Listed:
  • Karol Przanowski

Abstract

The paper is aware of the importance of certain figures that are essential to an understanding of Credit Scoring models in credit acceptance process optimization, namely if the power of discrimination measured by Gini value is increased by 5% then the profit of the process can be increased monthly by about 1 500 kPLN (300 kGBP, 500 kUSD, 350 kEUR). Simple business models of credit loans are also presented: acquisition - installment loan (low price) and cross-sell - cash loans (high price). Scoring models are used to optimize process, to become profitable. Various acceptance strategies with different cutoffs are presented, some are profitable and some are not. Moreover, in a time of prosperity some are preferable whilst the inverse is true during a period of high risk or crisis. To optimize the process four models are employed: three risk models, to predict the probability of default and one typical propensity model to predict the probability of response. It is a simple but very important example of the Customer Lifetime Value (CLTV or CLV) model business, where risk and response models are working together to become a profitable process.

Suggested Citation

  • Karol Przanowski, 2014. "Credit acceptance process strategy case studies - the power of Credit Scoring," Papers 1403.6531, arXiv.org.
  • Handle: RePEc:arx:papers:1403.6531
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.6531
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven Finlay, 2010. "Credit Scoring, Response Modelling and Insurance Rating," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-29898-9, May.
    2. G Verstraeten & D Van den Poel, 2005. "The impact of sample bias on consumer credit scoring performance and profitability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 981-992, August.
    3. repec:rze:efinan:v:9:y:2012:i:1:p:44-59 is not listed on IDEAS
    4. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405, Decembrie.
    5. Banasik, John & Crook, Jonathan, 2007. "Reject inference, augmentation, and sample selection," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1582-1594, December.
    6. J Banasik & J Crook, 2005. "Credit scoring, augmentation and lean models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1072-1081, September.
    7. Karol Przanowski, 2013. "Banking Retail Consumer Finance Data Generator – Credit Scoring Data Repository," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 9(1), pages 44-59, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. Rogelio A. Mancisidor & Michael Kampffmeyer & Kjersti Aas & Robert Jenssen, 2019. "Deep Generative Models for Reject Inference in Credit Scoring," Papers 1904.11376, arXiv.org, revised Sep 2021.
    3. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    4. Gero Szepannek, 2022. "An Overview on the Landscape of R Packages for Open Source Scorecard Modelling," Risks, MDPI, vol. 10(3), pages 1-33, March.
    5. Runchi Zhang & Zhiyi Qiu, 2020. "Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
    6. Calabrese, Raffaella & Osmetti, Silvia Angela & Zanin, Luca, 2024. "Sample selection bias in non-traditional lending: A copula-based approach for imbalanced data," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    7. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    8. Monir El Annas & Badreddine Benyacoub & Mohamed Ouzineb, 2023. "Semi-supervised adapted HMMs for P2P credit scoring systems with reject inference," Computational Statistics, Springer, vol. 38(1), pages 149-169, March.
    9. A?da Kammoun & Imen Triki, 2016. "Credit Scoring Models for a Tunisian Microfinance Institution: Comparison between Artificial Neural Network and Logistic Regression," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 61-78, February.
    10. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    11. Singh, Ramendra Pratap & Singh, Ramendra & Mishra, Prashant, 2021. "Does managing customer accounts receivable impact customer relationships, and sales performance? An empirical investigation," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    12. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    13. Ha-Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," EconomiX Working Papers 2016-10, University of Paris Nanterre, EconomiX.
    14. Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
    15. Nikita Kozodoi & Panagiotis Katsas & Stefan Lessmann & Luis Moreira-Matias & Konstantinos Papakonstantinou, 2019. "Shallow Self-Learning for Reject Inference in Credit Scoring," Papers 1909.06108, arXiv.org.
    16. Jackelyn Hwang & Elizabeth Kneebone & Vasudha Kumar, 2023. "Recent Findings on Residential Instability in Oakland," Community Development Research Brief, Federal Reserve Bank of San Francisco, vol. 2023(02), pages 1-33, February.
    17. Y Kim & S Y Sohn, 2007. "Technology scoring model considering rejected applicants and effect of reject inference," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1341-1347, October.
    18. Ha Thu Nguyen, 2016. "Reject inference in application scorecards: evidence from France," Working Papers hal-04141601, HAL.
    19. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    20. Bátiz-Zuk Enrique & Mohamed Abdulkadir & Sánchez-Cajal Fátima, 2021. "Exploring the sources of loan default clustering using survival analysis with frailty," Working Papers 2021-14, Banco de México.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.6531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.