IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.0527.html
   My bibliography  Save this paper

Parameter estimation for the subcritical Heston model based on discrete time observations

Author

Listed:
  • Matyas Barczy
  • Gyula Pap
  • Tamas T. Szabo

Abstract

We study asymptotic properties of some (essentially conditional least squares) parameter estimators for the subcritical Heston model based on discrete time observations derived from conditional least squares estimators of some modified parameters.

Suggested Citation

  • Matyas Barczy & Gyula Pap & Tamas T. Szabo, 2014. "Parameter estimation for the subcritical Heston model based on discrete time observations," Papers 1403.0527, arXiv.org, revised Feb 2016.
  • Handle: RePEc:arx:papers:1403.0527
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.0527
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2013. "Stationarity and ergodicity for an affine two factor model," Papers 1302.2534, arXiv.org, revised Sep 2013.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Overbeck, Ludger & Rydén, Tobias, 1997. "Estimation in the Cox-Ingersoll-Ross Model," Econometric Theory, Cambridge University Press, vol. 13(3), pages 430-461, June.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Hurn, A.S. & Lindsay, K.A. & McClelland, A.J., 2013. "A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions," Journal of Econometrics, Elsevier, vol. 172(1), pages 106-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matyas Barczy & Balazs Nyul & Gyula Pap, 2015. "Least squares estimation for the subcritical Heston model based on continuous time observations," Papers 1511.05948, arXiv.org, revised Aug 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matyas Barczy & Balazs Nyul & Gyula Pap, 2015. "Least squares estimation for the subcritical Heston model based on continuous time observations," Papers 1511.05948, arXiv.org, revised Aug 2018.
    2. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    3. Chang, Chuang-Chang & Hsieh, Pei-Fang & Tang, Chih-Wei & Wang, Yaw-Huei, 2013. "The intraday behavior of information misreaction across various categories of investors in the Taiwan options market," Journal of Financial Markets, Elsevier, vol. 16(2), pages 362-385.
    4. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    5. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    6. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    7. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    8. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    9. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.
    10. Evans, Lewis & Guthrie, Graeme & Lu, Andrea, 2013. "The role of storage in a competitive electricity market and the effects of climate change," Energy Economics, Elsevier, vol. 36(C), pages 405-418.
    11. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019.
    12. Song-Ping Zhu & Guang-Hua Lian, 2018. "On the Convexity Correction Approximation in Pricing Volatility Swaps and VIX Futures," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 383-401, November.
    13. Javier de Frutos & Victor Gaton, 2018. "An extension of Heston's SV model to Stochastic Interest Rates," Papers 1809.09069, arXiv.org.
    14. Philipp Harms & David Stefanovits & Josef Teichmann & Mario V. Wuthrich, 2015. "Consistent Re-Calibration of the Discrete-Time Multifactor Vasi\v{c}ek Model," Papers 1512.06454, arXiv.org, revised Sep 2016.
    15. Ang, Andrew & Liu, Jun, 2007. "Risk, return, and dividends," Journal of Financial Economics, Elsevier, vol. 85(1), pages 1-38, July.
    16. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Chiu-Ping, 2019. "Reasonable evaluation of VIX options for the Taiwan stock index," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 111-130.
    17. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    18. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    19. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    20. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.0527. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.