IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1401.1954.html
   My bibliography  Save this paper

Refined wing asymptotics for the Merton and Kou jump diffusion models

Author

Listed:
  • Stefan Gerhold
  • Johannes F. Morgenbesser
  • Axel Zrunek

Abstract

Refining previously known estimates, we give large-strike asymptotics for the implied volatility of Merton's and Kou's jump diffusion models. They are deduced from call price approximations by transfer results of Gao and Lee. For the Merton model, we also analyse the density of the underlying and show that it features an interesting "almost power law" tail.

Suggested Citation

  • Stefan Gerhold & Johannes F. Morgenbesser & Axel Zrunek, 2014. "Refined wing asymptotics for the Merton and Kou jump diffusion models," Papers 1401.1954, arXiv.org.
  • Handle: RePEc:arx:papers:1401.1954
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1401.1954
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    2. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    2. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    3. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
    4. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    5. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    6. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    7. Antonie Kotzé & Rudolf Oosthuizen & Edson Pindza, 2015. "Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options," JRFM, MDPI, vol. 8(1), pages 1-40, January.
    8. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    9. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    10. Aleksandar Mijatovi'c & Peter Tankov, 2012. "A new look at short-term implied volatility in asset price models with jumps," Papers 1207.0843, arXiv.org, revised Jul 2012.
    11. Philip Stahl, 2022. "Asymptotic extrapolation of model-free implied variance: exploring structural underestimation in the VIX Index," Review of Derivatives Research, Springer, vol. 25(3), pages 315-339, October.
    12. Vimal Raval & Antoine Jacquier, 2021. "The Log Moment formula for implied volatility," Papers 2101.08145, arXiv.org.
    13. Peter Carr & Andrey Itkin & Sasha Stoikov, 2019. "A model-free backward and forward nonlinear PDEs for implied volatility," Papers 1907.07305, arXiv.org.
    14. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    15. Nian Yao & Zhiqiu Li & Zhichao Ling & Junfeng Lin, 2020. "Asymptotic Smiles for an Affine Jump-Diffusion Model," Papers 2003.00334, arXiv.org, revised May 2020.
    16. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    17. Archil Gulisashvili, 2013. "Left-wing asymptotics of the implied volatility in the presence of atoms," Papers 1311.6027, arXiv.org.
    18. Leif Döring & Blanka Horvath & Josef Teichmann, 2017. "Functional Analytic (Ir-)Regularity Properties Of Sabr-Type Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-48, May.
    19. Carol Alexander & Alexander Rubinov & Markus Kalepky & Stamatis Leontsinis, 2012. "Regime‐dependent smile‐adjusted delta hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(3), pages 203-229, March.
    20. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.1954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.