IDEAS home Printed from
   My bibliography  Save this paper

Volatility Inference in the Presence of Both Endogenous Time and Microstructure Noise


  • Yingying Li
  • Zhiyuan Zhang
  • Xinghua Zheng


In this article we consider the volatility inference in the presence of both market microstructure noise and endogenous time. Estimators of the integrated volatility in such a setting are proposed, and their asymptotic properties are studied. Our proposed estimator is compared with the existing popular volatility estimators via numerical studies. The results show that our estimator can have substantially better performance when time endogeneity exists.

Suggested Citation

  • Yingying Li & Zhiyuan Zhang & Xinghua Zheng, 2013. "Volatility Inference in the Presence of Both Endogenous Time and Microstructure Noise," Papers 1303.5809,
  • Handle: RePEc:arx:papers:1303.5809

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    2. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    3. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    4. Kim, Seonjin & Zhao, Zhibiao, 2014. "Specification test for Markov models with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 118-133.
    5. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1303.5809. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.