IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1302.3771.html
   My bibliography  Save this paper

Pricing Step Options under the CEV and other Solvable Diffusion Models

Author

Listed:
  • Giuseppe Campolieti
  • Roman N. Makarov
  • Karl Wouterloot

Abstract

We consider a special family of occupation-time derivatives, namely proportional step options introduced by Linetsky in [Math. Finance, 9, 55--96 (1999)]. We develop new closed-form spectral expansions for pricing such options under a class of nonlinear volatility diffusion processes which includes the constant-elasticity-of-variance (CEV) model as an example. In particular, we derive a general analytically exact expression for the resolvent kernel (i.e. Green's function) of such processes with killing at an exponential stopping time (independent of the process) of occupation above or below a fixed level. Moreover, we succeed in Laplace inverting the resolvent kernel and thereby derive newly closed-form spectral expansion formulae for the transition probability density of such processes with killing. The spectral expansion formulae are rapidly convergent and easy-to-implement as they are based simply on knowledge of a pair of fundamental solutions for an underlying solvable diffusion process. We apply the spectral expansion formulae to the pricing of proportional step options for four specific families of solvable nonlinear diffusion asset price models that include the CEV diffusion model and three other multi-parameter state-dependent local volatility confluent hypergeometric diffusion processes.

Suggested Citation

  • Giuseppe Campolieti & Roman N. Makarov & Karl Wouterloot, 2013. "Pricing Step Options under the CEV and other Solvable Diffusion Models," Papers 1302.3771, arXiv.org.
  • Handle: RePEc:arx:papers:1302.3771
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1302.3771
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Campolieti & Roman Makarov, 2008. "Path integral pricing of Asian options on state-dependent volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 147-161.
    2. Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
    3. Kwai Sun Leung & Yue Kuen Kwok, 2007. "Distribution of occupation times for constant elasticity of variance diffusion and the pricing of α-quantile options," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 87-94.
    4. Vadim Linetsky, 1999. "Step Options," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 55-96, January.
    5. Ning Cai & Nan Chen & Xiangwei Wan, 2010. "Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 412-437, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Detemple, Jérôme & Laminou Abdou, Souleymane & Moraux, Franck, 2020. "American step options," European Journal of Operational Research, Elsevier, vol. 282(1), pages 363-385.
    2. Roman N. Makarov, 2016. "Modeling liquidation risk with occupation times," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-11, December.
    3. Sebastian F. Tudor & Rupak Chatterjee & Igor Tydniouk, 2021. "On a new parametrization class of solvable diffusion models and transition probability kernels," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1773-1790, October.
    4. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    5. Giuseppe Campolieti & Hiromichi Kato & Roman N. Makarov, 2022. "Spectral Expansions for Credit Risk Modelling with Occupation Times," Risks, MDPI, vol. 10(12), pages 1-20, November.
    6. Zhou, Jiang & Wu, Lan & Bai, Yang, 2017. "Occupation times of Lévy-driven Ornstein–Uhlenbeck processes with two-sided exponential jumps and applications," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 80-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djilali Ait Aoudia & Jean-Franc{c}ois Renaud, 2016. "Pricing occupation-time options in a mixed-exponential jump-diffusion model," Papers 1603.09329, arXiv.org.
    2. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    3. Zhou, Jiang & Wu, Lan & Bai, Yang, 2017. "Occupation times of Lévy-driven Ornstein–Uhlenbeck processes with two-sided exponential jumps and applications," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 80-90.
    4. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    5. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    6. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Luca Capriotti & Yupeng Jiang & Gaukhar Shaimerdenova, 2019. "Approximation Methods For Inhomogeneous Geometric Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-16, March.
    8. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    9. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    10. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    11. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    12. Tim Leung & Hyungbin Park, 2017. "LONG-TERM GROWTH RATE OF EXPECTED UTILITY FOR LEVERAGED ETFs: MARTINGALE EXTRACTION APPROACH," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-33, September.
    13. Yingchun Deng & Xuan Huang & Ya Huang & Xuyan Xiang & Jieming Zhou, 2020. "n-Dimensional Laplace Transforms of Occupation Times for Pre-Exit Diffusion Processes," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 345-360, March.
    14. Makarov Roman N. & Glew Devin, 2010. "Exact simulation of Bessel diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 283-306, January.
    15. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    16. Anna Ananova & Rama Cont & Renyuan Xu, 2020. "Model-free Analysis of Dynamic Trading Strategies," Papers 2011.02870, arXiv.org, revised Mar 2025.
    17. Giuseppe Campolieti & Roman N. Makarov & Andrey Vasiliev, 2011. "Bridge Copula Model for Option Pricing," Papers 1110.4669, arXiv.org.
    18. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    19. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    20. Mikhail Chernov & Brett R. Dunn & Francis A. Longstaff, 2018. "Macroeconomic-Driven Prepayment Risk and the Valuation of Mortgage-Backed Securities," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 1132-1183.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.3771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.