IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Performance Analysis of Hybrid Forecasting Model In Stock Market Forecasting

  • Mahesh S. Khadka
  • K. M. George
  • N. Park
  • J. B. Kim

This paper presents performance analysis of hybrid model comprise of concordance and Genetic Programming (GP) to forecast financial market with some existing models. This scheme can be used for in depth analysis of stock market. Different measures of concordances such as Kendalls Tau, Ginis Mean Difference, Spearmans Rho, and weak interpretation of concordance are used to search for the pattern in past that look similar to present. Genetic Programming is then used to match the past trend to present trend as close as possible. Then Genetic Program estimates what will happen next based on what had happened next. The concept is validated using financial time series data (S&P 500 and NASDAQ indices) as sample data sets. The forecasted result is then compared with standard ARIMA model and other model to analyse its performance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1209.4608
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1209.4608.

as
in new window

Length:
Date of creation: Sep 2012
Date of revision: May 2013
Publication status: Published in International Journal of Managing Information Technology (IJMIT), Vol. 4, No. 3, August 2012
Handle: RePEc:arx:papers:1209.4608
Contact details of provider: Web page: http://arxiv.org/

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.4608. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.