IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1204.3452.html
   My bibliography  Save this paper

The Variance of Standard Option Returns

Author

Listed:
  • Adi Ben-Meir
  • Jeremy Schiff

Abstract

The vast majority of works on option pricing operate on the assumption of risk neutral valuation, and consequently focus on the expected value of option returns, and do not consider risk parameters, such as variance. We show that it is possible to give explicit formulae for the variance of European option returns (vanilla calls and puts, as well as barrier options), and that for American options the variance can be computed using a PDE approach, involving a modified Black-Scholes PDE. We show how the need to consider risk parameters, such as the variance, and also the probability of expiring worthless (PEW), arises naturally for individual investors in options. Furthermore, we show that a volatility smile arises in a simple model of risk-seeking option pricing.

Suggested Citation

  • Adi Ben-Meir & Jeremy Schiff, 2012. "The Variance of Standard Option Returns," Papers 1204.3452, arXiv.org.
  • Handle: RePEc:arx:papers:1204.3452
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1204.3452
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Merton, Robert C & Scholes, Myron S & Gladstein, Mathew L, 1982. "The Returns and Risks of Alternative Put-Option Portfolio Investment Strategies," The Journal of Business, University of Chicago Press, vol. 55(1), pages 1-55, January.
    2. Peter W. Duck & Chao Yang & David P. Newton & Martin Widdicks, 2009. "Singular Perturbation Techniques Applied To Multiasset Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 457-486.
    3. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    4. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349.
    5. Goyal, Amit & Saretto, Alessio, 2009. "Cross-section of option returns and volatility," Journal of Financial Economics, Elsevier, vol. 94(2), pages 310-326, November.
    6. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    8. Merton, Robert C & Scholes, Myron S & Gladstein, Mathew L, 1978. "The Returns and Risk of Alternative Call Option Portfolio Investment Strategies," The Journal of Business, University of Chicago Press, vol. 51(2), pages 183-242, April.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Joshua D. Coval, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.3452. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.