IDEAS home Printed from
   My bibliography  Save this paper

Portfolio Optimization under Convex Incentive Schemes


  • Maxim Bichuch
  • Stephan Sturm


We consider the terminal wealth utility maximization problem from the point of view of a portfolio manager who is paid by an incentive scheme, which is given as a convex function $g$ of the terminal wealth. The manager's own utility function $U$ is assumed to be smooth and strictly concave, however the resulting utility function $U \circ g$ fails to be concave. As a consequence, the problem considered here does not fit into the classical portfolio optimization theory. Using duality theory, we prove wealth-independent existence and uniqueness of the optimal portfolio in general (incomplete) semimartingale markets as long as the unique optimizer of the dual problem has a continuous law. In many cases, this existence and uniqueness result is independent of the incentive scheme and depends only on the structure of the set of equivalent local martingale measures. As examples, we discuss (complete) one-dimensional models as well as (incomplete) lognormal mixture and popular stochastic volatility models. We also provide a detailed analysis of the case where the unique optimizer of the dual problem does not have a continuous law, leading to optimization problems whose solvability by duality methods depends on the initial wealth of the investor.

Suggested Citation

  • Maxim Bichuch & Stephan Sturm, 2011. "Portfolio Optimization under Convex Incentive Schemes," Papers 1109.2945,, revised Oct 2013.
  • Handle: RePEc:arx:papers:1109.2945

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Frey, RĂ¼diger, 1997. "Derivative Asset Analysis in Models with Level-Dependent and Stochastic Volatility," Discussion Paper Serie B 401, University of Bonn, Germany.
    2. repec:dau:papers:123456789/1531 is not listed on IDEAS
    3. B. Bouchard & N. Touzi & A. Zeghal, 2004. "Dual formulation of the utility maximization problem: the case of nonsmooth utility," Papers math/0405290,
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Jennifer N. Carpenter, 2000. "Does Option Compensation Increase Managerial Risk Appetite?," Journal of Finance, American Finance Association, vol. 55(5), pages 2311-2331, October.
    6. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    7. Stavros Panageas & Mark M. Westerfield, 2009. "High-Water Marks: High Risk Appetites? Convex Compensation, Long Horizons, and Portfolio Choice," Journal of Finance, American Finance Association, vol. 64(1), pages 1-36, February.
    8. Stephen A. Ross, 2004. "Compensation, Incentives, and the Duality of Risk Aversion and Riskiness," Journal of Finance, American Finance Association, vol. 59(1), pages 207-225, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Paolo Guasoni & Johannes Muhle-Karbe & Hao Xing, 2013. "Robust Portfolios and Weak Incentives in Long-Run Investments," Papers 1306.2751,, revised Aug 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.2945. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.