IDEAS home Printed from
   My bibliography  Save this paper

American Options Based on Malliavin Calculus and Nonparametric Variance Reduction Methods


  • Lokman Abbas-Turki


  • Bernard Lapeyre



This paper is devoted to pricing American options using Monte Carlo and the Malliavin calculus. Unlike the majority of articles related to this topic, in this work we will not use localization fonctions to reduce the variance. Our method is based on expressing the conditional expectation E[f(St)/Ss] using the Malliavin calculus without localization. Then the variance of the estimator of E[f(St)/Ss] is reduced using closed formulas, techniques based on a conditioning and a judicious choice of the number of simulated paths. Finally, we perform the stopping times version of the dynamic programming algorithm to decrease the bias. On the one hand, we will develop the Malliavin calculus tools for exponential multi-dimensional diffusions that have deterministic and no constant coefficients. On the other hand, we will detail various nonparametric technics to reduce the variance. Moreover, we will test the numerical efficiency of our method on a heterogeneous CPU/GPU multi-core machine.

Suggested Citation

  • Lokman Abbas-Turki & Bernard Lapeyre, 2011. "American Options Based on Malliavin Calculus and Nonparametric Variance Reduction Methods," Papers 1104.5131,, revised Apr 2011.
  • Handle: RePEc:arx:papers:1104.5131

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1104.5131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.