IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

American Options Based on Malliavin Calculus and Nonparametric Variance Reduction Methods

Listed author(s):
  • Lokman Abbas-Turki


  • Bernard Lapeyre


Registered author(s):

    This paper is devoted to pricing American options using Monte Carlo and the Malliavin calculus. Unlike the majority of articles related to this topic, in this work we will not use localization fonctions to reduce the variance. Our method is based on expressing the conditional expectation E[f(St)/Ss] using the Malliavin calculus without localization. Then the variance of the estimator of E[f(St)/Ss] is reduced using closed formulas, techniques based on a conditioning and a judicious choice of the number of simulated paths. Finally, we perform the stopping times version of the dynamic programming algorithm to decrease the bias. On the one hand, we will develop the Malliavin calculus tools for exponential multi-dimensional diffusions that have deterministic and no constant coefficients. On the other hand, we will detail various nonparametric technics to reduce the variance. Moreover, we will test the numerical efficiency of our method on a heterogeneous CPU/GPU multi-core machine.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1104.5131.

    in new window

    Date of creation: Apr 2011
    Date of revision: Apr 2011
    Handle: RePEc:arx:papers:1104.5131
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1104.5131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.