IDEAS home Printed from
   My bibliography  Save this paper

Convex order of discrete, continuous and predictable quadratic variation & applications to options on variance


  • Martin Keller-Ressel
  • Claus Griessler


We consider a square-integrable semimartingale and investigate the convex order relations between its discrete, continuous and predictable quadratic variation. As the main results, we show that if the semimartingale has conditionally independent increments and symmetric jump measure, then its discrete realized variance dominates its quadratic variation in increasing convex order. The results have immediate applications to the pricing of options on realized variance. For a class of models including time-changed Levy models and Sato processes with symmetric jumps our results show that options on variance are typically underpriced, if quadratic variation is substituted for the discretely sampled realized variance.

Suggested Citation

  • Martin Keller-Ressel & Claus Griessler, 2011. "Convex order of discrete, continuous and predictable quadratic variation & applications to options on variance," Papers 1103.2310,, revised Oct 2012.
  • Handle: RePEc:arx:papers:1103.2310

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.2310. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.