IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1102.1348.html
   My bibliography  Save this paper

The computation of Greeks with multilevel Monte Carlo

Author

Listed:
  • Sylvestre Burgos
  • M. B. Giles

Abstract

We study the use of the multilevel Monte Carlo technique in the context of the calculation of Greeks. The pathwise sensitivity analysis differentiates the path evolution and reduces the payoff's smoothness. This leads to new challenges: the inapplicability of pathwise sensitivities to non-Lipschitz payoffs often makes the use of naive algorithms impossible. These challenges can be addressed in three different ways: payoff smoothing using conditional expectations of the payoff before maturity; approximating the previous technique with path splitting for the final timestep; using of a hybrid combination of pathwise sensitivity and the Likelihood Ratio Method. We investigate the strengths and weaknesses of these alternatives in different multilevel Monte Carlo settings.

Suggested Citation

  • Sylvestre Burgos & M. B. Giles, 2011. "The computation of Greeks with multilevel Monte Carlo," Papers 1102.1348, arXiv.org.
  • Handle: RePEc:arx:papers:1102.1348
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1102.1348
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilles Pag`es & Olivier Pironneau & Guillaume Sall, 2016. "Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options," Papers 1606.06143, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.1348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.