IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Optimal control of a big financial company with debt liability under bankrupt probability constraints

Listed author(s):
  • Zongxia Liang
  • Bin Sun
Registered author(s):

    This paper considers an optimal control of a big financial company with debt liability under bankrupt probability constraints. The company, which faces constant liability payments and has choices to choose various production/business policies from an available set of control policies with different expected profits and risks, controls the business policy and dividend payout process to maximize the expected present value of the dividends until the time of bankruptcy. However, if the dividend payout barrier is too low to be acceptable, it may result in the company's bankruptcy soon. In order to protect the shareholders' profits, the managements of the company impose a reasonable and normal constraint on their dividend strategy, that is, the bankrupt probability associated with the optimal dividend payout barrier should be smaller than a given risk level within a fixed time horizon. This paper aims at working out the optimal control policy as well as optimal return function for the company under bankrupt probability constraint by stochastic analysis, PDE methods and variational inequality approach. Moreover, we establish a risk-based capital standard to ensure the capital requirement of can cover the total given risk by numerical analysis and give reasonable economic interpretation for the results.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1007.5376.

    in new window

    Date of creation: Jul 2010
    Date of revision: Aug 2010
    Handle: RePEc:arx:papers:1007.5376
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.5376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.