IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1007.5376.html
   My bibliography  Save this paper

Optimal control of a big financial company with debt liability under bankrupt probability constraints

Author

Listed:
  • Zongxia Liang
  • Bin Sun

Abstract

This paper considers an optimal control of a big financial company with debt liability under bankrupt probability constraints. The company, which faces constant liability payments and has choices to choose various production/business policies from an available set of control policies with different expected profits and risks, controls the business policy and dividend payout process to maximize the expected present value of the dividends until the time of bankruptcy. However, if the dividend payout barrier is too low to be acceptable, it may result in the company's bankruptcy soon. In order to protect the shareholders' profits, the managements of the company impose a reasonable and normal constraint on their dividend strategy, that is, the bankrupt probability associated with the optimal dividend payout barrier should be smaller than a given risk level within a fixed time horizon. This paper aims at working out the optimal control policy as well as optimal return function for the company under bankrupt probability constraint by stochastic analysis, PDE methods and variational inequality approach. Moreover, we establish a risk-based capital standard to ensure the capital requirement of can cover the total given risk by numerical analysis and give reasonable economic interpretation for the results.

Suggested Citation

  • Zongxia Liang & Bin Sun, 2010. "Optimal control of a big financial company with debt liability under bankrupt probability constraints," Papers 1007.5376, arXiv.org, revised Aug 2010.
  • Handle: RePEc:arx:papers:1007.5376
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1007.5376
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.5376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.