IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1007.0026.html
   My bibliography  Save this paper

A Dynamical Model for Forecasting Operational Losses

Author

Listed:
  • Marco Bardoscia
  • Roberto Bellotti

Abstract

A novel dynamical model for the study of operational risk in banks and suitable for the calculation of the Value at Risk (VaR) is proposed. The equation of motion takes into account the interactions among different bank's processes, the spontaneous generation of losses via a noise term and the efforts made by the bank to avoid their occurrence. Since the model is very general, it can be tailored on the internal organizational structure of a specific bank by estimating some of its parameters from historical operational losses. The model is exactly solved in the case in which there are no causal loops in the matrix of couplings and it is shown how the solution can be exploited to estimate also the parameters of the noise. The forecasting power of the model is investigated by using a fraction $f$ of simulated data to estimate the parameters, showing that for $f = 0.75$ the VaR can be forecast with an error $\simeq 10^{-3}$.

Suggested Citation

  • Marco Bardoscia & Roberto Bellotti, 2010. "A Dynamical Model for Forecasting Operational Losses," Papers 1007.0026, arXiv.org, revised Feb 2012.
  • Handle: RePEc:arx:papers:1007.0026
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1007.0026
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Bardoscia & Roberto Bellotti, 2012. "A Dynamical Approach to Operational Risk Measurement," Papers 1202.2532, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.0026. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.