IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage

Listed author(s):
  • Mathias Beiglb\"ock
  • Walter Schachermayer
  • Bezirgen Veliyev

We give an elementary proof of the celebrated Bichteler-Dellacherie Theorem which states that the class of stochastic processes $S$ allowing for a useful integration theory consists precisely of those processes which can be written in the form $S=M+A$, where $M$ is a local martingale and $A$ is a finite variation process. In other words, $S$ is a good integrator if and only if it is a semi-martingale. We obtain this decomposition rather directly from an elementary discrete-time Doob-Meyer decomposition. By passing to convex combinations we obtain a direct construction of the continuous time decomposition, which then yields the desired decomposition. As a by-product of our proof we obtain a characterization of semi-martingales in terms of a variant of \emph{no free lunch}, thus extending a result from [DeSc94].

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number 1004.5559.

in new window

Date of creation: Apr 2010
Handle: RePEc:arx:papers:1004.5559
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Kardaras, Constantinos & Platen, Eckhard, 2011. "On the semimartingale property of discounted asset-price processes," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2678-2691, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.5559. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.