IDEAS home Printed from https://ideas.repec.org/p/anp/en2014/044.html

A Multi-Agent Computational Model For Brazilian Stock Market: The "Gap Value" Channel Of Monetary Policy Transmission Mechanism

Author

Listed:
  • MARCELO DE OLIVEIRA PASSOS
  • JEAN RODRIGUES VENECIAN

Abstract

No abstract is available for this item.

Suggested Citation

  • Marcelo De Oliveira Passos & Jean Rodrigues Venecian, 2016. "A Multi-Agent Computational Model For Brazilian Stock Market: The "Gap Value" Channel Of Monetary Policy Transmission Mechanism," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 044, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
  • Handle: RePEc:anp:en2014:044
    as

    Download full text from publisher

    File URL: http://www.anpec.org.br/encontro/2014/submissao/files_I/i4-cb4ae43c6519a2496600f7f55f9f469e.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Judd, Kenneth L., 2006. "Computationally Intensive Analyses in Economics," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 17, pages 881-893, Elsevier.
    2. Werker, C. & Brenner, T., 2004. "Empirical calibration of simulation models," Working Papers 04.13, Eindhoven Center for Innovation Studies.
    3. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    4. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    2. Giorgio Fagiolo & Paul Windrum & Alessio Moneta, 2006. "Empirical Validation of Agent Based Models: A Critical Survey," LEM Papers Series 2006/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Pastushkov, A., 2025. "Evolutionary and agent-based computational finance: The new paradigms for asset pricing," Journal of the New Economic Association, New Economic Association, vol. 66(1), pages 196-222.
    4. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    5. Bàrbara Llacay & Gilbert Peffer, 2018. "Using realistic trading strategies in an agent-based stock market model," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 308-350, September.
    6. Y. Qiang, 1999. "CGE Modelling and Australian Economics," Economics Discussion / Working Papers 99-04, The University of Western Australia, Department of Economics.
    7. Reitz, Stefan & Rülke, Jan & Stadtmann, Georg, 2012. "Nonlinear Expectations in Speculative Markets," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62045, Verein für Socialpolitik / German Economic Association.
    8. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "Nonlinear expectations in speculative markets – Evidence from the ECB survey of professional forecasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1349-1363.
    9. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    10. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    11. Thomas Brenner & Claudia Werker, 2006. "A Practical Guide to Inference in Simulation Models," Papers on Economics and Evolution 2006-02, Philipps University Marburg, Department of Geography.
    12. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    13. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    14. Kato, Ryo & Nishiyama, Shin-Ichi, 2005. "Optimal monetary policy when interest rates are bounded at zero," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 97-133, January.
    15. Guy Maugis, Pierre-André, 2019. "Paradigm shifts," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-9.
    16. Anufriev, Mikhail & Bottazzi, Giulio & Pancotto, Francesca, 2006. "Equilibria, stability and asymptotic dominance in a speculative market with heterogeneous traders," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1787-1835.
    17. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    18. Matthias Lengnick & Hans-Werner Wohltmann, 2013. "Agent-based financial markets and New Keynesian macroeconomics: a synthesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 1-32, April.
    19. Mario A Bertella & Felipe R Pires & Ling Feng & Harry Eugene Stanley, 2014. "Confidence and the Stock Market: An Agent-Based Approach," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    20. Jackson, Antony & Ladley, Daniel, 2016. "Market ecologies: The effect of information on the interaction and profitability of technical trading strategies," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 270-280.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anp:en2014:044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Zadra Armond (email available below). General contact details of provider: https://edirc.repec.org/data/anpecea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.