Author
Listed:
- Maynard, Alex
- Shimotsu, Katsumi
Abstract
This paper develops a new test of orthogonality based on a zero restriction on the covariance between the dependent variable and the predictor. The test provides a useful alternative to regression-based tests when conditioning variables have roots close or equal to unity. In this case standard predictive regression tests can suffer from well-documented size distortion. Moreover, under the alternative hypothesis, they force the dependent variable to share the same order of integration as the predictor, whereas in practice the dependent variable often appears stationary while the predictor may be near-nonstationary. By contrast, the new test does not enforce the same orders of integration and is therefore capable of detecting alternatives to orthogonality that are excluded by the standard predictive regression model. Moreover, the test statistic has a standard normal limit distribution for both unit root and local-to-unity conditioning variables, without prior knowledge of the local-to-unity parameter. If the conditioning variable is stationary, the test remains conservative and consistent. Thus the new test requires neither size correction nor unit root pre-test. Simulations suggest good small sample performance. As an empirical application, we test for the predictability of stock returns using two persistent predictors, the dividendprice- ratio and short-term interest rate.
Suggested Citation
Maynard, Alex & Shimotsu, Katsumi, 2007.
"Covariance-based orthogonality tests for regressors with unknown persistence,"
Queen's Economics Department Working Papers
273598, Queen's University - Department of Economics.
Handle:
RePEc:ags:quedwp:273598
DOI: 10.22004/ag.econ.273598
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:273598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.