IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/273530.html
   My bibliography  Save this paper

Inference via Kernel Smoothing of Bootstrap P Values

Author

Listed:
  • Racine, Jeff
  • MacKinnon, James

Abstract

Resampling methods such as the bootstrap are routinely used to esti- mate the ¯nite-sample null distributions of a range of test statistics. We present a simple and tractable way to perform classical hypothesis tests based upon a kernel estimate of the CDF of the bootstrap statistics. This approach has a number of appealing features: i) it can perform well when the number of bootstraps is ex- tremely small, ii) it is approximately exact, and iii) it can yield substantial power gains relative to the conventional approach. The proposed approach is likely to be useful when the statistic being bootstrapped is computationally expensive.

Suggested Citation

  • Racine, Jeff & MacKinnon, James, 2006. "Inference via Kernel Smoothing of Bootstrap P Values," Queen's Economics Department Working Papers 273530, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:273530
    DOI: 10.22004/ag.econ.273530
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273530/files/qed_wp_1054.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    2. Racine, Jeff & MacKinnon, James, 2004. "Simulation-based Tests that can Use Any Number of Simulations," Queen's Economics Department Working Papers 273465, Queen's University - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cabane, Charlotte & Hille, Adrian & Lechner, Michael, 2015. "Mozart or Pelé? The effects of teenagers’ participation in music and sports," Economics Working Paper Series 1509, University of St. Gallen, School of Economics and Political Science.
    2. Michael Lechner & Paul Downward, 2017. "Heterogeneous sports participation and labour market outcomes in England," Applied Economics, Taylor & Francis Journals, vol. 49(4), pages 335-348, January.
    3. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    4. Tim Pawlowski & Ute Schüttoff & Paul Downward & Michael Lechner, 2018. "Can Sport Really Help to Meet the Millennium Development Goals? Evidence From Children in Peru," Journal of Sports Economics, , vol. 19(4), pages 498-521, May.
    5. Patrick Richard, 2010. "Kernel smoothing end of sample instability tests P values," Cahiers de recherche 10-19, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    6. MacKinnon, James, 2007. "Bootstrap Hypothesis Testing," Queen's Economics Department Working Papers 273603, Queen's University - Department of Economics.
    7. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    8. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    9. Pawlowski, Tim & Schüttoff, Ute & Downward, Paul & Lechner, Michael, 2014. "Sport participation and Child Development in Less Developed Countries," Economics Working Paper Series 1433, University of St. Gallen, School of Economics and Political Science.
    10. Lechner, Michael & Hille, Adrian & Cabane, Charlotte, 2015. "Mozart or Pelé? The effects of teenagers? participation in music and sports," CEPR Discussion Papers 10556, C.E.P.R. Discussion Papers.
    11. Pawlowski, Tim & Schüttoff, Ute & Downward, Paul & Lechner, Michael, 2014. "Children’s skill formation in less developed countries – The impact of sports participation," Economics Working Paper Series 1412, University of St. Gallen, School of Economics and Political Science.
    12. Marcos à lvarez-Díaz & José María Chamorro-Rivas & Manuel González-Gómez & María Soledad Otero-Giráldez, 2024. "The impact of the COVID-19 outbreak on intra- and inter-regional domestic travel: Evidence from Spain," Tourism Economics, , vol. 30(4), pages 1039-1061, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James G., 2011. "Thirty Years of Heteroskedasticity-Robust Inference," Queen's Economics Department Working Papers 273816, Queen's University - Department of Economics.
    2. MacKinnon, James G., 2011. "Thirty Years of Heteroskedasticity-Robust Inference," Queen's Economics Department Working Papers 273816, Queen's University - Department of Economics.
    3. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    4. Rand R. Wilcox, 2018. "Robust regression: an inferential method for determining which independent variables are most important," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 100-111, January.
    5. MacKinnon, James, 2007. "Bootstrap Hypothesis Testing," Queen's Economics Department Working Papers 273603, Queen's University - Department of Economics.
    6. MacKinnon, James, 2007. "Bootstrap Hypothesis Testing," Queen's Economics Department Working Papers 273603, Queen's University - Department of Economics.
    7. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    8. Xiaofeng Lv & Gupeng Zhang & Xinkuo Xu & Qinghai Li, 2017. "Bootstrap-calibrated empirical likelihood confidence intervals for the difference between two Gini indexes," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 15(2), pages 195-216, June.
    9. El-Shagi, Makram & Jung, Alexander, 2015. "Does the Greenspan era provide evidence on leadership in the FOMC?," Journal of Macroeconomics, Elsevier, vol. 43(C), pages 173-190.
    10. James G. MacKinnon & Jeff Racine, 2004. "Simulation-based Tests That Can Use Any Number Of Simulations," Working Paper 1027, Economics Department, Queen's University.
    11. Johannesson Magnus & Östling Robert & Ranehill Eva, 2010. "The Effect of Competition on Physical Activity: A Randomized Trial," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-31, September.
    12. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    13. Emmanuel Flachaire, 2005. "More Efficient Tests Robust to Heteroskedasticity of Unknown Form," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 219-241.
    14. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    15. Nilanjana Roy, 2002. "Is Adaptive Estimation Useful For Panel Models With Heteroskedasticity In The Individual Specific Error Component? Some Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 189-203.
    16. Ahlgren, N. & Antell, J., 2008. "Bootstrap and fast double bootstrap tests of cointegration rank with financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4754-4767, June.
    17. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    18. repec:ebl:ecbull:v:30:y:2010:i:1:p:55-66 is not listed on IDEAS
    19. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    20. Girardin, Eric & Moussa, Zakaria, 2011. "Quantitative easing works: Lessons from the unique experience in Japan 2001â2006," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(4), pages 461-495, October.
    21. Rafael Salas & Juan Rodríguez, 2013. "Popular support for social evaluation functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 985-1014, April.

    More about this item

    Keywords

    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:273530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.