IDEAS home Printed from https://ideas.repec.org/p/ags/aaea14/170232.html
   My bibliography  Save this paper

Stochastic Frontier Yield Function Analysis to Predict Returns to a New Crop: An Example of Camelina Sativa Yields Conditional on Local Factor Levels

Author

Listed:
  • Kotsiri, Sofia
  • Zering, Kelly D.
  • Mayer, Michelle

Abstract

The purpose of this study is to develop a model that calculates the probability distribution of camelina expected yields dependent on location-related variables such as precipitation, temperature, and solar radiation, as well as nitrogen rate and others. Camelina is an oilseed crop grown in cool climate with low input requirements including little water. The application to camelina addresses challenges in analysis of potential adoption of crops with limited field data. Our data include trials and crop yields in the United States from 2005 to 2012. They have been assembled from various published reports covering a range of locations, seasons, and production methods. We begin by fitting a least squares (LS) regression model to camelina yields. As a robustness check we also apply a stochastic frontier framework under Cobb-Douglas technology. Preliminary results indicate that the average maximum precipitation for the period of interest positively affected the mean camelina yields, whereas it has no impact on yield variability. An increase in average maximum precipitation will more likely decrease the technical inefficiency. Both higher nitrogen rates and higher average maximum growing degree days will more likely increase the average yields. A taller camelina plant positively affects the mean yields and the yield variability. In contrast, total solar radiation is negatively correlated with mean yields and variation. There is still much to be learned about the crop and its best management practices as production expands. The analysis of the interaction of managed input variables and environmental factors will help us assess varietal performance and provide location conditional predictions.

Suggested Citation

  • Kotsiri, Sofia & Zering, Kelly D. & Mayer, Michelle, 2014. "Stochastic Frontier Yield Function Analysis to Predict Returns to a New Crop: An Example of Camelina Sativa Yields Conditional on Local Factor Levels," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170232, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea14:170232
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/170232
    Download Restriction: no

    References listed on IDEAS

    as
    1. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    2. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    3. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    camelina; stochastic frontier; weather; Crop Production/Industries; Production Economics; Productivity Analysis;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea14:170232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.