IDEAS home Printed from https://ideas.repec.org/p/aeg/wpaper/2010-20.html
   My bibliography  Save this paper

Computing optimal recovery policies for financial markets

Author

Listed:
  • Fred E. Benth

    (Department of Mathematics, CMA, University of Oslo, Norway.)

  • Geir Dahl

    (Department of Mathematics and Department of Informatics, CMA, University of Oslo, Norway.)

  • Carlo Mannino

    (Dipartimento di Informatica e Sistemistica "Antonio Ruberti" Sapienza, Universita' di Roma)

Abstract

The current financial crisis motivates the study of correlated defaults in financial systems. In this paper we focus on such a model which is based on Markov random fields. This is a probabilistic model where uncertainty in default probabilities incorporates expert's opinions on the default risk (based on various credit ratings). We consider a bilevel optimization model for finding an optimal recovery policy: which companies should be supported given a fixed budget. This is closely linked to the problem of finding a maximum likelihood estimator of the defaulting set of agents, and we show how to compute this solution efficiently using combinatorial methods. We also prove properties of such optimal solutions. A practical procedure for estimation of model parameters is also given. Computational examples are presented and experiments indicate that our methods can find optimal recovery policies for up to about 100 companies. The overall approach is evaluated on a real-world problem concerning the major banks in Scandinavia and public loans. To our knowledge this is a first attempt to apply combinatorial optimization techniques to this important, and expanding, area of default risk analysis.

Suggested Citation

  • Fred E. Benth & Geir Dahl & Carlo Mannino, 2010. "Computing optimal recovery policies for financial markets," DIS Technical Reports 2010-20, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  • Handle: RePEc:aeg:wpaper:2010-20
    as

    Download full text from publisher

    File URL: http://www.dis.uniroma1.it/~bibdis/RePEc/aeg/wpaper/2010-20.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I. Onur Filiz & Xin Guo & Jason Morton & Bernd Sturmfels, 2008. "Graphical models for correlated defaults," Papers 0809.1393, arXiv.org.
    2. Martine Labbé & Patrice Marcotte & Gilles Savard, 1998. "A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing," Management Science, INFORMS, vol. 44(12-Part-1), pages 1608-1622, December.
    3. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    4. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    5. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    6. René Carmona & Jean-Pierre Fouque & Douglas Vestal, 2009. "Interacting particle systems for the computation of rare credit portfolio losses," Finance and Stochastics, Springer, vol. 13(4), pages 613-633, September.
    7. Stefan Weber & Kay Giesecke, 2003. "Credit Contagion and Aggregate Losses," Computing in Economics and Finance 2003 246, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred E. Benth & Geir Dahl & Carlo Mannino, 2012. "Computing Optimal Recovery Policies for Financial Markets," Operations Research, INFORMS, vol. 60(6), pages 1373-1388, December.
    2. Xu, Ruxing & Li, Shenghong, 2010. "Belief updating, debt pricing and financial decisions under asymmetric information," Research in International Business and Finance, Elsevier, vol. 24(2), pages 123-137, June.
    3. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    4. Tao Peng, 2010. "Portfolio Credit Risk Modelling and CDO Pricing - Analytics and Implied Trees from CDO Tranches," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 8, July-Dece.
    5. Edirisinghe, Chanaka & Gupta, Aparna & Roth, Wendy, 2015. "Risk assessment based on the analysis of the impact of contagion flow," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 209-223.
    6. Wong, Jim & Wong, Tak-Chuen & Leung, Phyllis, 2010. "Predicting banking distress in the EMEAP economies," Journal of Financial Stability, Elsevier, vol. 6(3), pages 169-179, September.
    7. Raffaella Calabrese & Galina Andreeva & Jake Ansell, 2019. "“Birds of a Feather” Fail Together: Exploring the Nature of Dependency in SME Defaults," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 71-84, January.
    8. Andreas Mühlbacher & Thomas Guhr, 2018. "Extreme Portfolio Loss Correlations in Credit Risk," Risks, MDPI, Open Access Journal, vol. 6(3), pages 1-25, July.
    9. Gann, Philipp, 2008. "Der Internal Capital Adequacy Assessment Process als regulatorischer Treiber eines aktiven Kreditportfoliomanagements," Discussion Papers in Business Administration 4831, University of Munich, Munich School of Management.
    10. Didier Cossin & Henry Schellhorn, 2007. "Credit Risk in a Network Economy," Management Science, INFORMS, vol. 53(10), pages 1604-1617, October.
    11. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    12. David E Allen & Robert Powell, 2012. "The fluctuating default risk of Australian banks," Australian Journal of Management, Australian School of Business, vol. 37(2), pages 297-325, August.
    13. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    14. Ioannis Anagnostou & Sumit Sourabh & Drona Kandhai, 2018. "Incorporating Contagion in Portfolio Credit Risk Models Using Network Theory," Complexity, Hindawi, vol. 2018, pages 1-15, January.
    15. Steinbacher, Matjaz & Steinbacher, Mitja & Steinbacher, Matej, 2013. "Credit Contagion in Financial Markets: A Network-Based Approach," MPRA Paper 49616, University Library of Munich, Germany.
    16. de Andrade, Fabio Wendling Muniz & Thomas, Lyn, 2007. "Structural models in consumer credit," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1569-1581, December.
    17. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    18. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    19. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.
    20. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeg:wpaper:2010-20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonietta Angelica Zucconi (email available below). General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.