IDEAS home Printed from https://ideas.repec.org/h/bis/bisifc/64-29.html
   My bibliography  Save this book chapter

Constructing high-frequency and thematic economic sentiment indicators from online news articles: applications in the Philippine context

In: Data science in central banking: enhancing the access to and sharing of data

Author

Listed:
  • Alan Chester Arcin
  • Carmelita Esclanda-Lo
  • Chelsea Anne Ong
  • Rossvern Reyes

Abstract

No abstract is available for this item.

Suggested Citation

  • Alan Chester Arcin & Carmelita Esclanda-Lo & Chelsea Anne Ong & Rossvern Reyes, 2025. "Constructing high-frequency and thematic economic sentiment indicators from online news articles: applications in the Philippine context," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: enhancing the access to and sharing of data, volume 64, Bank for International Settlements.
  • Handle: RePEc:bis:bisifc:64-29
    as

    Download full text from publisher

    File URL: https://www.bis.org/ifc/publ/ifcb64_29.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irving Fisher Committee, 2025. "Data science in central banking: enhancing the access to and sharing of data," IFC Bulletins, Bank for International Settlements, number 64.
    2. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    3. Müller, Karsten, 2020. "German forecasters' narratives: How informative are German business cycle forecast reports?," Working Papers 23, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    4. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    5. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    6. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    7. Bennani, Hamza & Romelli, Davide, 2024. "Exploring the informativeness and drivers of tone during committee meetings: The case of the Federal Reserve," Journal of International Money and Finance, Elsevier, vol. 148(C).
    8. Qian Wang & Duowen Wu & Lina Yan, 2021. "Effect of positive tone in MD&A disclosure on capital structure adjustment speed: evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5809-5845, December.
    9. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    10. Umar, Tarik, 2022. "Complexity aversion when SeekingAlpha," Journal of Accounting and Economics, Elsevier, vol. 73(2).
    11. Pathak, Jalaj, 2025. "Impact of judgment readability on financial crimes," Finance Research Letters, Elsevier, vol. 75(C).
    12. Alkaraan, Fadi & Elmarzouky, Mahmoud & Hussainey, Khaled & Venkatesh, V.G., 2023. "Sustainable strategic investment decision-making practices in UK companies: The influence of governance mechanisms on synergy between industry 4.0 and circular economy," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    14. Hamza Bennani & Cécile Couharde & Yoan Wallois, 2024. "The effect of IMF communication on government bond markets: insights from sentiment analysis," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 160(2), pages 615-656, May.
    15. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    16. Alastair Marais, 2024. "Audit Quality and Financial Statement Manipulation: The Moderating Effect of Tone at the Top," International Journal of Economics and Financial Issues, Econjournals, vol. 14(5), pages 220-232, September.
    17. Yingying Xin & Xiao Zeng & Zhengying Luo, 2022. "Customers' tone in MD&A disclosure and suppliers' inventory efficiency: Evidence from China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3833-3853, December.
    18. Wang, Fang & Hou, Jingru, 2024. "Financial-industrial integration and corporate financialization: Evidence from China," Finance Research Letters, Elsevier, vol. 69(PA).
    19. Jeffrey J. Burks & Christine Cuny & Joseph Gerakos & João Granja, 2018. "Competition and voluntary disclosure: evidence from deregulation in the banking industry," Review of Accounting Studies, Springer, vol. 23(4), pages 1471-1511, December.
    20. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:bisifc:64-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.