IDEAS home Printed from https://ideas.repec.org/f/pno257.html
   My authors  Follow this author

Diaa Noureldin

Personal Details

First Name:Diaa
Middle Name:
Last Name:Noureldin
Suffix:
RePEc Short-ID:pno257

Affiliation

(99%) Department of Economics
American University

Cairo, Egypt
http://www.aucegypt.edu/Business/econ/

:

113 Sharia Kasr El Aini Cairo
RePEc:edi:sbeaueg (more details at EDIRC)

(1%) Economic Research Forum (ERF)

Cairo, Egypt
http://www.erf.org.eg/

: 202-3370810
202-3616042
21 Al-Sad Al Aaly St. Dokki, Giza
RePEc:edi:erfaceg (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
  2. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.

Articles

  1. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
  2. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," Discussion Papers 12-23, University of Copenhagen. Department of Economics.
    2. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," CORE Discussion Papers 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 15(2), pages 247-285.
    4. David T. Frazierz & Éric Renault, 2016. "Efficient Two-Step Estimation via Targeting," CIRANO Working Papers 2016s-16, CIRANO.
    5. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    6. Sensoy, Ahmet & Ozturk, Kevser & Hacihasanoglu, Erk, 2014. "Constructing a financial fragility index for emerging countries," Finance Research Letters, Elsevier, vol. 11(4), pages 410-419.
    7. Frazier, David T. & Renault, Eric, 2017. "Efficient two-step estimation via targeting," Journal of Econometrics, Elsevier, vol. 201(2), pages 212-227.
    8. Dimitrios P. Louzis, 2015. "The economic value of flexible dynamic correlation models," Economics Bulletin, AccessEcon, vol. 35(1), pages 774-782.
    9. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    10. Wang, Zihe & Li, Johnny Siu-Hang, 2016. "A DCC-GARCH multi-population mortality model and its applications to pricing catastrophic mortality bonds," Finance Research Letters, Elsevier, vol. 16(C), pages 103-111.
    11. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-27, January.
    12. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
    13. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
    14. Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.

  2. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.

    Cited by:

    1. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    2. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    3. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
    4. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-949, CIRJE, Faculty of Economics, University of Tokyo.
    5. Karanasos, Menelaos & Xu, Yongdeng, 2017. "Matrix Inequality Constraints for Vector (Asymmetric Power) GARCH/HEAVY Models and MEM with spillovers: some New (Mixture) Formulations," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
    6. Oh, Dong Hwan & Patton, Andrew J., 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
    7. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    8. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," CORE Discussion Papers 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 15(2), pages 247-285.
    10. BRAIONE, Manuela, 2016. "A time-varying long run HEAVY model," CORE Discussion Papers 2016002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    12. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    13. Irving Arturo De Lira Salvatierra & Andrew J. Patton, 2013. "Dynamic Copula Models and High Frequency Data," Working Papers 13-28, Duke University, Department of Economics.
    14. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    15. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices," Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
    17. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
    18. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
    19. Bannouh, K. & Martens, M.P.E. & Oomen, R.C.A. & van Dijk, D.J.C., 2012. "Realized mixed-frequency factor models for vast dimensional covariance estimation," ERIM Report Series Research in Management ERS-2012-017-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Opschoor, Anne & van Dijk, Dick & van der Wel, Michel, 2014. "Predicting volatility and correlations with Financial Conditions Indexes," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 435-447.
    21. Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, Center for Economic and Financial Research (CEFIR).
    22. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    23. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, Open Access Journal, vol. 5(2), pages 1-31, June.
    24. Braione, Manuela & Scholtes, Nicolas K., 2014. "Construction of value-at-risk forecasts under different distributional assumptions within a BEKK framework," CORE Discussion Papers 2014059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    25. Huang, Shih-Feng & Tu, Ya-Ting, 2014. "Asymptotic distribution of the EPMS estimator for financial derivatives pricing," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 129-145.
    26. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    27. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    28. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
    29. Jia Li & Andrew J. Patton, 2013. "Asymptotic Inference about Predictive Accuracy Using High Frequency Data," Working Papers 13-27, Duke University, Department of Economics.
    30. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    31. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    32. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    33. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    34. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
    35. Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
    36. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    37. Veredas, David & Vander Elst, Harry, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
    38. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," CORE Discussion Papers RP 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    39. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
    40. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    41. Jeff Fleming & Chris Kirby, 2013. "Component-Driven Regime-Switching Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 263-301, March.
    42. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," CORE Discussion Papers 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    43. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-27, January.
    44. Takayuki Morimoto & Yoshinori Kawasaki, 2017. "Forecasting Financial Market Volatility Using a Dynamic Topic Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(3), pages 149-167, September.
    45. Kevin Sheppard, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    46. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2011. "The Merit of High-Frequency Data in Portfolio Allocation," SFB 649 Discussion Papers SFB649DP2011-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    47. Peter Reinhard Hansen & Pawel Janus & Siem Jan Koopman, 2016. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Tinbergen Institute Discussion Papers 16-061/III, Tinbergen Institute.
    48. Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
    49. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2015. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-979, CIRJE, Faculty of Economics, University of Tokyo.
    50. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(2), pages 383-417.
    51. Harry-Paul Vander Elst & David Veredas, 2014. "Disentangled Jump-Robust Realized Covariances and Correlations with Non-Synchronous Prices," Working Papers ECARES ECARES 2014-35, ULB -- Universite Libre de Bruxelles.
    52. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    53. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    54. Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
    55. Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
    56. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.

Articles

  1. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    See citations under working paper version above.
  2. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    See citations under working paper version above.Sorry, no citations of articles recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 2 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (2) 2011-03-05 2012-03-08. Author is listed
  2. NEP-ETS: Econometric Time Series (2) 2011-03-05 2012-03-08. Author is listed
  3. NEP-CBA: Central Banking (1) 2011-03-05. Author is listed
  4. NEP-FMK: Financial Markets (1) 2012-03-08. Author is listed
  5. NEP-FOR: Forecasting (1) 2011-03-05. Author is listed
  6. NEP-MST: Market Microstructure (1) 2011-03-05. Author is listed
  7. NEP-RMG: Risk Management (1) 2011-03-05. Author is listed

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Diaa Noureldin should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.