IDEAS home Printed from https://ideas.repec.org/a/zib/zbngwk/v6y2022i1p19-24.html
   My bibliography  Save this article

Value Addition Of Grapes Using Hot Air Dryers

Author

Listed:
  • Muhammad Azhar Ali

    (Department of Structures & Environmental Engineering, University of Agriculture Faisalabad.)

  • Tabish Hassan

    (Department of Structures & Environmental Engineering, University of Agriculture Faisalabad.)

Abstract

This study includes to study the effect of air temperature on raisins and to study the economic analysis of proposed methodology and compare the output with conventional techniques. It can be seen from the results that both the hot air dryers e.g. solar and electric dryer produce raisins in a much lower time in comparison to the traditional method of raisin dryer. Solar dryer takes 96 hours to produce raisin while electric dryer takes 15 hours for raisin production. This time frame for raisin production is much lower than that of 336 hours or 2 weeks, an average time for raisin production using traditional sun drying method. Raisin produced using traditional methods are associated with many of health issues. Generally, raisins produced using the traditional method has a risk of being rotten. Rainwater may reach the grapes that are placed for being dry in traditional method. Such raisin has a light color as its color is washed away. Customers find such raisins less attractive. Moisture content of raisins is an important parameter to evaluate the quality of raisin. Moisture content present in the market available raisin that is produced using traditional method is 25.30 %.

Suggested Citation

  • Muhammad Azhar Ali & Tabish Hassan, 2022. "Value Addition Of Grapes Using Hot Air Dryers," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 6(1), pages 19-24, February.
  • Handle: RePEc:zib:zbngwk:v:6:y:2022:i:1:p:19-24
    DOI: 10.26480/gwk.01.2022.19.24
    as

    Download full text from publisher

    File URL: https://enggheritage.com/archives/1gwk2022/1gwk2022-19-24.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/gwk.01.2022.19.24?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adsten, M & Perers, B & Wäckelgård, E, 2002. "The influence of climate and location on collector performance," Renewable Energy, Elsevier, vol. 25(4), pages 499-509.
    2. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    3. Hallak, H. & Hillal, J. & Hilal, F. & Rahhal, R., 1996. "The staircase solar dryer: Design and characteristics," Renewable Energy, Elsevier, vol. 7(2), pages 177-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    3. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    4. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    5. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    6. Thipjak Nualboonrueng & Pongpith Tuenpusa & Yuki Ueda & Atsushi Akisawa, 2012. "Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok," Energies, MDPI, vol. 5(4), pages 1-16, April.
    7. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    8. Román, Franz & Nagle, Marcus & Leis, Hermann & Janjai, Serm & Mahayothee, Busarakorn & Haewsungcharoen, Methinee & Müller, Joachim, 2009. "Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand," Renewable Energy, Elsevier, vol. 34(7), pages 1661-1667.
    9. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    10. Hu, Mingke & Zhao, Bin & Suhendri, S. & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Yang, Ronggui & Su, Yuehong & Pei, Gang, 2022. "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate," Applied Energy, Elsevier, vol. 306(PB).
    11. Singh, Sukhmeet & Singh, Parm Pal & Dhaliwal, S.S, 2004. "Multi-shelf portable solar dryer," Renewable Energy, Elsevier, vol. 29(5), pages 753-765.
    12. Esteban Zalamea-Leon & Edgar A. Barragán-Escandón & John Calle-Sigüencia & Mateo Astudillo-Flores & Diego Juela-Quintuña, 2021. "Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    13. Yu, Xinyi & Wu, Weidong & Wang, Jing & Jin, Yunfei & Li, Zhenbo, 2022. "Experimental study on effect of drying air supply temperature on performance of a quasi-two-stage closed loop heat pump drying system for lentinus edodes," Renewable Energy, Elsevier, vol. 201(P1), pages 1038-1049.
    14. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    15. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    16. Gu, Xinzhuang & Dai, Jianguo & Li, Haifeng & Dai, Yanjun, 2022. "Experimental and theoretical assessment of a solar assisted heat pump system for in-bin grain drying: A comprehensive case study," Renewable Energy, Elsevier, vol. 181(C), pages 426-444.
    17. Shahbaz Nasir Khan & Muhammad Shahzaib, 2022. "Energy Efficient Building Design: Timber Frame Construction Based In Hemp Fiber Insulation," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 6(1), pages 31-33, October.
    18. Gilago, Mulatu C. & V.P., Chandramohan, 2022. "Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd," Energy, Elsevier, vol. 252(C).
    19. Saleh, A. & Badran, I., 2009. "Modeling and experimental studies on a domestic solar dryer," Renewable Energy, Elsevier, vol. 34(10), pages 2239-2245.
    20. Singh, S.P. & Jairaj, K.S. & Srikant, K., 2012. "Universal drying rate constant of seedless grapes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6295-6302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbngwk:v:6:y:2022:i:1:p:19-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://enggheritage.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.