IDEAS home Printed from https://ideas.repec.org/a/zib/zbnamm/v7y2024i1p49-59.html
   My bibliography  Save this article

Environment-Controlled Thin-Layer-Drying Of Cut-Roselle: Drying-Experiments, Effects Of Drying-Settings, Drying-Models

Author

Listed:
  • I.E. Saeed

    (Department of Mech. & Manufacturing Eng., Faculty of Eng. & Built Environ., National University of Malaysia, 43600 Bangi)

  • Zulkhairi Zainol Abidin

    (Department of Mech. & Manufacturing Eng., Faculty of Eng. & Built Environ., National University of Malaysia, 43600 Bangi)

Abstract

This research investigated how the drying-conditions affect drying-performance of Cut-Roselle (Hibiscus_sabdariffa L.). The experiments are conducted using Constant-Temperature-Humidity-Chamber, where varied temperatures (35,45,55,65°C) and relative humidity levels (30,35,40,45,50%) are tested. The drying process for Cut-Roselle primarily occurred during the falling-rate-period. Notably, the drying-air temperature significantly, influenced the drying-kinetics, with higher temperatures (ranging from 35 to 65°C) resulted in shorter drying-times. Relative-humidity had a lesser-impact compared to the temperature. Extended drying-periods and increased equilibrium moisture levels are observed under conditions of elevated relative-humidity and reduced temperatures. An evaluation of various thin-layer drying-models is conducted to determine the most accurate model for the drying-characteristics. The Modified-Page II model demonstrated exceptional fit quality, with R2=0.99949. It effectively described the dehydration-behavior of Cut-Roselle within the range of the experimental drying-parameters.

Suggested Citation

  • I.E. Saeed & Zulkhairi Zainol Abidin, 2024. "Environment-Controlled Thin-Layer-Drying Of Cut-Roselle: Drying-Experiments, Effects Of Drying-Settings, Drying-Models," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 7(1), pages 49-59, July.
  • Handle: RePEc:zib:zbnamm:v:7:y:2024:i:1:p:49-59
    DOI: 10.26480/amm.01.2024.49.59
    as

    Download full text from publisher

    File URL: https://actamechanicamalaysia.com/archives/1amm2024/1amm2024-49-59.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/amm.01.2024.49.59?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. David-Hernández, Marco A. & Calderon-Vásquez, Ignacio & Battisti, Felipe G. & Cardemil, José M. & Cazorla-Marín, Antonio, 2024. "Design and assessment of a concentrating solar thermal system for industrial process heat with a copper slag packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 376(PA).
    3. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    4. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    5. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    6. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    7. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    8. Masud, Mahadi Hasan & Himel, Md. Hasibul Hasan & Ahmed, Mim Mashrur & Chowdhury, Sami Ahbab & Dabnichki, Peter, 2024. "Energy, exergy, exergo-economic and exergo-environmental analysis of waste heat-based convective dryer," Energy, Elsevier, vol. 312(C).
    9. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
    10. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    11. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    12. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    13. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    14. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    15. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    16. Olivkar, Piyush R. & Katekar, Vikrant P. & Deshmukh, Sandip S. & Palatkar, Sanyukta V., 2022. "Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
    18. Ndukwu, M.C. & Onyenwigwe, D. & Abam, F.I. & Eke, A.B. & Dirioha, C., 2020. "Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage," Renewable Energy, Elsevier, vol. 154(C), pages 553-568.
    19. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & Zhu, T.T. & Ma, C., 2020. "Thermal performance of a closed collector–storage solar air heating system with latent thermal storage: An experimental study," Energy, Elsevier, vol. 202(C).
    20. Benhamza, Abderrahmane & Boubekri, Abdelghani & Atia, Abdelmalek & El Ferouali, Hicham & Hadibi, Tarik & Arıcı, Müslüm & Abdenouri, Naji, 2021. "Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential," Renewable Energy, Elsevier, vol. 169(C), pages 1190-1209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnamm:v:7:y:2024:i:1:p:49-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://actamechanicamalaysia.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.