IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v19y2016i03ns0219024916500163.html
   My bibliography  Save this article

A Comparative Study Of Monotone Quantile Regression Methods For Financial Returns

Author

Listed:
  • YUZHI CAI

    (School of Management, Swansea University, Swansea, SA1 8EN, UK)

Abstract

Quantile regression methods have been used widely in finance to alleviate estimation problems related to the impact of outliers and the fat-tailed error distribution of financial returns. However, a potential problem with the conventional quantile regression method is that the estimated conditional quantiles may cross over, leading to a failure of the analysis. It is noticed that the crossing over issues usually occur at high or low quantile levels, which are the quantile levels of great interest when analyzing financial returns. Several methods have appeared in the literature to tackle this problem. This study compares three methods, i.e. Cai & Jiang, Bondell et al. and Schnabel & Eilers, for estimating noncrossing conditional quantiles by using four financial return series. We found that all these methods provide similar quantiles at nonextreme quantile levels. However, at extreme quantile levels, the methods of Bondell et al. and Schnabel & Eilers may underestimate (overestimate) upper (lower) extreme quantiles, while that of Cai & Jiang may overestimate (underestimate) upper (lower) extreme quantiles. All methods provide similar median forecasts.

Suggested Citation

  • Yuzhi Cai, 2016. "A Comparative Study Of Monotone Quantile Regression Methods For Financial Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-16, May.
  • Handle: RePEc:wsi:ijtafx:v:19:y:2016:i:03:n:s0219024916500163
    DOI: 10.1142/S0219024916500163
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024916500163
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024916500163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    2. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    3. Yuzhi Cai & Julian Stander, 2008. "Quantile self‐exciting threshold autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 186-202, January.
    4. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    5. Sabine Schnabel & Paul Eilers, 2013. "Simultaneous estimation of quantile curves using quantile sheets," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 77-87, January.
    6. Koenker, Roger, 1984. "A note on L-estimates for linear models," Statistics & Probability Letters, Elsevier, vol. 2(6), pages 323-325, December.
    7. Thompson, Paul & Cai, Yuzhi & Moyeed, Rana & Reeve, Dominic & Stander, Julian, 2010. "Bayesian nonparametric quantile regression using splines," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1138-1150, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, T. & Dortet-Bernadet, J.-L. & Fan, Y., 2019. "Simultaneous fitting of Bayesian penalised quantile splines," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 93-109.
    2. Karthik Sriram & R. V. Ramamoorthi & Pulak Ghosh, 2016. "On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 87-104, February.
    3. Yun Yang & Surya T. Tokdar, 2017. "Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1107-1120, July.
    4. Liwen Zhang & Huixia Judy Wang & Zhongyi Zhu, 2017. "Composite change point estimation for bent line quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 145-168, February.
    5. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    6. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    7. Y. Andriyana & I. Gijbels & A. Verhasselt, 2018. "Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity," Statistical Papers, Springer, vol. 59(4), pages 1589-1621, December.
    8. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    9. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    10. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    11. Ilaria Lucrezia Amerise, 2013. "Weighted Non-Crossing Quantile Regressions," Working Papers 201308, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    12. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    13. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    14. Yuzhi Cai & Guodong Li, 2018. "A novel approach to modelling the distribution of financial returns," Working Papers 2018-22, Swansea University, School of Management.
    15. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    16. Matthias Fischer & Daniel Kraus & Marius Pfeuffer & Claudia Czado, 2017. "Stress Testing German Industry Sectors: Results from a Vine Copula Based Quantile Regression," Risks, MDPI, vol. 5(3), pages 1-13, July.
    17. Marco Alfò & Maria Francesca Marino & Maria Giovanna Ranalli & Nicola Salvati & Nikos Tzavidis, 2021. "M‐quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 122-146, January.
    18. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    19. Yanke Wu & Maozai Tian, 2017. "An effective method to reduce the computational complexity of composite quantile regression," Computational Statistics, Springer, vol. 32(4), pages 1375-1393, December.
    20. Stella W. Self & Christopher S. McMahan & Brook T. Russell, 2021. "Identifying meteorological drivers of PM2.5 levels via a Bayesian spatial quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:03:n:s0219024916500163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.