IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v36y2019i01ns0217595919500015.html
   My bibliography  Save this article

Efficient Cluster-Based Heuristics for the Team Orienteering Problem with Time Windows

Author

Listed:
  • Damianos Gavalas

    (Department of Product & Systems Design Engineering, University of the Aegean, Syros, 84100, Greece and Computer Technology Institute and Press, “Diophantus” (CTI), Patras, Greece)

  • Charalampos Konstantopoulos

    (Department of Informatics, University of Piraeus, Karaoli & Dimitriou 80 Piraeus, 18534, Greece and Computer Technology Institute and Press, “Diophantus” (CTI), Patras, Greece)

  • Konstantinos Mastakas

    (School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Heroon Polytechniou 9 Zografou, 15780, Greece and Computer Technology Institute and Press, “Diophantus” (CTI), Patras, Greece)

  • Grammati Pantziou

    (Department of Informatics and Computer Engineering, University of West Attica, Agiou Spyridonos Aigaleo, 12243, Greece and Computer Technology Institute and Press, “Diophantus” (CTI), Patras, Greece)

Abstract

In the Team Orienteering Problem with Time Windows (TOPTW), a variant of the Vehicle Routing Problem with Profits, a set of locations is given, each associated with a profit, a visiting time and a time window. The aim is to maximize the overall profit collected by a number of routes, while the duration of each route must not exceed a given time budget. TOPTW is NP-hard and is typically used to model the Tourist Trip Design Problem. The latter deals with deriving near optimal multiple-day tours for tourists visiting a destination with several points of interest (POIs). The most efficient known heuristic approach to TOPTW which yields the best solution quality versus execution time, is based on Iterated Local Search (ILS). However, the ILS algorithm treats each node separately, hence it tends to overlook highly profitable areas of nodes situated far from the current solution, considering them too time-expensive to visit. We propose two cluster-based extensions to ILS addressing the aforementioned weakness by grouping nodes on separate clusters (based on geographical criteria), thereby making visits to such nodes more attractive. Our approaches improve ILS with respect to solutions quality and execution time as evidenced by experimental tests exercised on both existing and new TTDP-oriented benchmark instances.

Suggested Citation

  • Damianos Gavalas & Charalampos Konstantopoulos & Konstantinos Mastakas & Grammati Pantziou, 2019. "Efficient Cluster-Based Heuristics for the Team Orienteering Problem with Time Windows," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-44, February.
  • Handle: RePEc:wsi:apjorx:v:36:y:2019:i:01:n:s0217595919500015
    DOI: 10.1142/S0217595919500015
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595919500015
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595919500015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Qian & Lim, Andrew, 2014. "An iterative three-component heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 232(2), pages 276-286.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. Lin, Shih-Wei & Yu, Vincent F., 2012. "A simulated annealing heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 217(1), pages 94-107.
    4. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    5. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    6. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    7. Labadie, Nacima & Mansini, Renata & Melechovský, Jan & Wolfler Calvo, Roberto, 2012. "The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search," European Journal of Operational Research, Elsevier, vol. 220(1), pages 15-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    2. Hu, Qian & Lim, Andrew, 2014. "An iterative three-component heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 232(2), pages 276-286.
    3. Ivanoe De Falco & Umberto Scafuri & Ernesto Tarantino, 2016. "Optimizing Personalized Touristic Itineraries by a Multiobjective Evolutionary Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1269-1312, November.
    4. Aldy Gunawan & Hoong Chuin Lau & Pieter Vansteenwegen & Kun Lu, 2017. "Well-tuned algorithms for the Team Orienteering Problem with Time Windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 861-876, August.
    5. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    6. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    7. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    8. Zhang, Shu & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2020. "Multi-period orienteering with uncertain adoption likelihood and waiting at customers," European Journal of Operational Research, Elsevier, vol. 282(1), pages 288-303.
    9. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    10. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    11. Mei, Yi & Salim, Flora D. & Li, Xiaodong, 2016. "Efficient meta-heuristics for the Multi-Objective Time-Dependent Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 443-457.
    12. Lee, Alan & Savelsbergh, Martin, 2015. "Dynamic ridesharing: Is there a role for dedicated drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 483-497.
    13. Yu, Qinxiao & Fang, Kan & Zhu, Ning & Ma, Shoufeng, 2019. "A matheuristic approach to the orienteering problem with service time dependent profits," European Journal of Operational Research, Elsevier, vol. 273(2), pages 488-503.
    14. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    15. Ernesto Tarantino & Ivanoe De Falco & Umberto Scafuri, 2019. "A mobile personalized tourist guide and its user evaluation," Information Technology & Tourism, Springer, vol. 21(3), pages 413-455, September.
    16. Vincent F. Yu & Yueh-Sheng Lin & Panca Jodiawan & Shih-Wei Lin & Yu-Chi Lai, 2023. "The Field Technician Scheduling Problem with Experience-Dependent Service Times," Mathematics, MDPI, vol. 11(21), pages 1-17, November.
    17. Oktay Yılmaz & Ertan Yakıcı & Mumtaz Karatas, 2019. "A UAV location and routing problem with spatio-temporal synchronization constraints solved by ant colony optimization," Journal of Heuristics, Springer, vol. 25(4), pages 673-701, October.
    18. Thibaut Vidal & Nelson Maculan & Luiz Satoru Ochi & Puca Huachi Vaz Penna, 2016. "Large Neighborhoods with Implicit Customer Selection for Vehicle Routing Problems with Profits," Transportation Science, INFORMS, vol. 50(2), pages 720-734, May.
    19. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    20. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:36:y:2019:i:01:n:s0217595919500015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.