IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v273y2019i2p488-503.html
   My bibliography  Save this article

A matheuristic approach to the orienteering problem with service time dependent profits

Author

Listed:
  • Yu, Qinxiao
  • Fang, Kan
  • Zhu, Ning
  • Ma, Shoufeng

Abstract

This paper addresses the orienteering problem with service time dependent profits (OPSTP), in which the profit collected at each vertex is characterized by a nonlinear function of service time, and the objective is to maximize the total profits by determining a subset of the vertices to be visited and assigning appropriate service time to each of them within a given time budget. To solve this problem, a mixed integer nonlinear programming model is formulated, and a two-phase matheuristic algorithm that consists of a tabu search method and a nonlinear programming is implemented. Extensive computational experiments are conducted on both randomly generated instances and instances that are adapted from the TSPLIB. The results show that our proposed matheuristic algorithm could be quite effective in finding good-quality solutions.

Suggested Citation

  • Yu, Qinxiao & Fang, Kan & Zhu, Ning & Ma, Shoufeng, 2019. "A matheuristic approach to the orienteering problem with service time dependent profits," European Journal of Operational Research, Elsevier, vol. 273(2), pages 488-503.
  • Handle: RePEc:eee:ejores:v:273:y:2019:i:2:p:488-503
    DOI: 10.1016/j.ejor.2018.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vansteenwegen, Pieter & Souffriau, Wouter & Berghe, Greet Vanden & Oudheusden, Dirk Van, 2009. "A guided local search metaheuristic for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 118-127, July.
    2. Mei, Yi & Salim, Flora D. & Li, Xiaodong, 2016. "Efficient meta-heuristics for the Multi-Objective Time-Dependent Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 443-457.
    3. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    4. E. Erkut & J. Zhang, 1996. "The maximum collection problem with time‐dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 749-763, August.
    5. Tang, Hao & Miller-Hooks, Elise & Tomastik, Robert, 2007. "Scheduling technicians for planned maintenance of geographically distributed equipment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 591-609, September.
    6. Gendreau, Michel & Laporte, Gilbert & Semet, Frederic, 1998. "A tabu search heuristic for the undirected selective travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 539-545, April.
    7. Hu, Qian & Lim, Andrew, 2014. "An iterative three-component heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 232(2), pages 276-286.
    8. C Archetti & D Feillet & A Hertz & M G Speranza, 2009. "The capacitated team orienteering and profitable tour problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 831-842, June.
    9. Wouter Souffriau & Pieter Vansteenwegen & Greet Vanden Berghe & Dirk Van Oudheusden, 2013. "The Multiconstraint Team Orienteering Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 47(1), pages 53-63, February.
    10. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    11. Elin Halvorsen-Weare & Kjetil Fagerholt, 2013. "Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints," Annals of Operations Research, Springer, vol. 203(1), pages 167-186, March.
    12. Han, Anthony Fu-Wha & Chu, Yu-Ching, 2016. "A multi-start heuristic approach for the split-delivery vehicle routing problem with minimum delivery amounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 11-31.
    13. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    14. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    15. H Tang & E Miller-Hooks, 2005. "Algorithms for a stochastic selective travelling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 439-452, April.
    16. Ann Campbell & Michel Gendreau & Barrett Thomas, 2011. "The orienteering problem with stochastic travel and service times," Annals of Operations Research, Springer, vol. 186(1), pages 61-81, June.
    17. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    18. Verbeeck, C. & Sörensen, K. & Aghezzaf, E.-H. & Vansteenwegen, P., 2014. "A fast solution method for the time-dependent orienteering problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 419-432.
    19. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    20. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    21. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    22. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    23. Adel Guitouni & Hatem Masri, 2014. "An orienteering model for the search and rescue problem," Computational Management Science, Springer, vol. 11(4), pages 459-473, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    2. Eva Barrena & David Canca & Leandro C. Coelho & Gilbert Laporte, 2023. "Analysis of the selective traveling salesman problem with time-dependent profits," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 165-193, April.
    3. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
    4. Nikzad, Erfaneh & Bashiri, Mahdi & Abbasi, Babak, 2021. "A matheuristic algorithm for stochastic home health care planning," European Journal of Operational Research, Elsevier, vol. 288(3), pages 753-774.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    2. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    3. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    4. Krzysztof Ostrowski & Joanna Karbowska-Chilinska & Jolanta Koszelew & Pawel Zabielski, 2017. "Evolution-inspired local improvement algorithm solving orienteering problem," Annals of Operations Research, Springer, vol. 253(1), pages 519-543, June.
    5. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    6. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    7. Aldy Gunawan & Hoong Chuin Lau & Pieter Vansteenwegen & Kun Lu, 2017. "Well-tuned algorithms for the Team Orienteering Problem with Time Windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 861-876, August.
    8. Kim, Hyunjoon & Kim, Byung-In, 2022. "Hybrid dynamic programming with bounding algorithm for the multi-profit orienteering problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 550-566.
    9. Zhang, Shu & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2020. "Multi-period orienteering with uncertain adoption likelihood and waiting at customers," European Journal of Operational Research, Elsevier, vol. 282(1), pages 288-303.
    10. Kirac, Emre & Milburn, Ashlea Bennett, 2018. "A general framework for assessing the value of social data for disaster response logistics planning," European Journal of Operational Research, Elsevier, vol. 269(2), pages 486-500.
    11. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    12. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    13. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    14. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    15. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    16. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    17. Mei, Yi & Salim, Flora D. & Li, Xiaodong, 2016. "Efficient meta-heuristics for the Multi-Objective Time-Dependent Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 443-457.
    18. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    19. Freeman, Nickolas K. & Keskin, Burcu B. & Çapar, İbrahim, 2018. "Attractive orienteering problem with proximity and timing interactions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 354-370.
    20. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:273:y:2019:i:2:p:488-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.