IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v17y2014i1p89-111.html
   My bibliography  Save this article

Comparison of Risk Analysis Approaches and a Case Study of the Risk of Incorporating Solar Photovoltaic Systems into a Commercial Electric Power Grid

Author

Listed:
  • Andrea Chaves
  • A. Terry Bahill

Abstract

This paper compares two common risk‐modeling approaches and then uses them to analyze the risk of incorporating solar photovoltaic (PV) systems into a commercial electric power grid. It uses procedures from both approaches such as Hierarchical Holographic Models, frequency and severity normalization, and avoiding numerical skewing by rare but serious events: It describes the benefits and limitations of these approaches. Then, this paper summarizes the main risks associated with incorporating Solar PV panel systems into a commercial electric power grid, presents a what‐if analysis for extreme scenarios, and explains mitigation strategies to ameliorate these risks. Finally, the paper points out some possible unintended consequences of incorporating Solar PV systems into a commercial electric power grid.

Suggested Citation

  • Andrea Chaves & A. Terry Bahill, 2014. "Comparison of Risk Analysis Approaches and a Case Study of the Risk of Incorporating Solar Photovoltaic Systems into a Commercial Electric Power Grid," Systems Engineering, John Wiley & Sons, vol. 17(1), pages 89-111, March.
  • Handle: RePEc:wly:syseng:v:17:y:2014:i:1:p:89-111
    DOI: 10.1002/sys.21254
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21254
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Terry Bahill & William J. Karnavas, 2000. "Risk Analysis of a pinewood derby: A case study," Systems Engineering, John Wiley & Sons, vol. 3(3), pages 143-155.
    2. Jesse Daniels & Paul W. Werner & A. Terry Bahill, 2001. "Quantitative methods for tradeoff analyses," Systems Engineering, John Wiley & Sons, vol. 4(3), pages 190-212.
    3. Eric D. Smith & William T. Siefert & David Drain, 2009. "Risk matrix input data biases," Systems Engineering, John Wiley & Sons, vol. 12(4), pages 344-360, December.
    4. Matthew H. Henry & Yacov Y. Haimes, 2009. "A Comprehensive Network Security Risk Model for Process Control Networks," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 223-248, February.
    5. Stan Kaplan & Yacov Y. Haimes & B. John Garrick, 2001. "Fitting Hierarchical Holographic Modeling into the Theory of Scenario Structuring and a Resulting Refinement to the Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 21(5), pages 807-807, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yu & Liu, Jicheng, 2022. "Risk assessment of photovoltaic - Energy storage utilization project based on improved Cloud-TODIM in China," Energy, Elsevier, vol. 253(C).
    2. Hossam A. Gabbar & Yahya Koraz, 2017. "Risk Assessment of Micro Energy Grid Protection Layers," Energies, MDPI, vol. 10(8), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric D. Smith & Young Jun Son & Massimo Piattelli‐Palmarini & A. Terry Bahill, 2007. "Ameliorating mental mistakes in tradeoff studies," Systems Engineering, John Wiley & Sons, vol. 10(3), pages 222-240, September.
    2. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    3. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    4. Bill A. Olson & Thomas A. Mazzuchi & Shahram Sarkani & Kevin Forsberg, 2012. "Problem management process, filling the gap in the systems engineering processes between the risk and opportunity processes," Systems Engineering, John Wiley & Sons, vol. 15(3), pages 275-286, September.
    5. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    6. Genserik L. L. Reniers & Kenneth Sörensen, 2013. "An Approach for Optimal Allocation of Safety Resources: Using the Knapsack Problem to Take Aggregated Cost‐Efficient Preventive Measures," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2056-2067, November.
    7. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    8. James H. Lambert & Benjamin L. Schulte & Priya Sarda, 2005. "Tracking the complexity of interactions between risk incidents and engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(3), pages 262-277, September.
    9. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    10. Hong Sun & Fangquan Yang & Peiwen Zhang & Yunxiang Zhao, 2023. "Flight Training Risk Identification and Assessment Based on the HHM-RFRM Model," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    11. Ioanna Ioannou & Jaime E. Cadena & Willy Aspinall & David Lange & Daniel Honfi & Tiziana Rossetto, 2022. "Prioritization of hazards for risk and resilience management through elicitation of expert judgement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2773-2795, July.
    12. Alexander A. Ganin & Phuoc Quach & Mahesh Panwar & Zachary A. Collier & Jeffrey M. Keisler & Dayton Marchese & Igor Linkov, 2020. "Multicriteria Decision Framework for Cybersecurity Risk Assessment and Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 183-199, January.
    13. Tony Shell, 2003. "The synthesis of optimal systems design solutions," Systems Engineering, John Wiley & Sons, vol. 6(2), pages 92-105.
    14. Clyde Chittister & Yacov Y. Haimes, 2010. "Harmonizing high performance computing (HPC) with large‐scale complex systems in computational science and engineering," Systems Engineering, John Wiley & Sons, vol. 13(1), pages 47-57, March.
    15. Mark Abkowitz & Janey Camp, 2017. "Structuring an Enterprise Risk Assessment Protocol: Traditional Practice and New Methods," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 79-97, March.
    16. Barry M. Horowitz & Yacov Y. Haimes, 2003. "Risk‐based methodology for scenario tracking, intelligence gathering, and analysis for countering terrorism," Systems Engineering, John Wiley & Sons, vol. 6(3), pages 152-169.
    17. Maria Leung & James H. Lambert & Alexander Mosenthal, 2004. "A Risk‐Based Approach to Setting Priorities in Protecting Bridges Against Terrorist Attacks," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 963-984, August.
    18. R. G. van der Vegt, 2018. "Risk Assessment and Risk Governance of Liquefied Natural Gas Development in Gladstone, Australia," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1830-1846, September.
    19. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    20. Kenneth G. Crowther & Yacov Y. Haimes, 2005. "Application of the inoperability input—output model (IIM) for systemic risk assessment and management of interdependent infrastructures," Systems Engineering, John Wiley & Sons, vol. 8(4), pages 323-341.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:17:y:2014:i:1:p:89-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.