IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v33y2025i2p1686-1699.html
   My bibliography  Save this article

The effect of extreme weather events on the frequency of child marriage: A systematic review of the evidence

Author

Listed:
  • Anna Palmer
  • Aïché Danioko
  • Alissa Koski

Abstract

Child marriage is considered a human rights violation, and its elimination is an explicit target of the United Nations Sustainable Development Goals. However, there is growing concern that climate change may be threatening efforts to eliminate child marriage. We conducted a systematic review to synthesise quantitative research on the relationship between climate change and child marriage and assess the risk of bias across these studies. We identified 18 studies from an interdisciplinary range of databases. Several studies found that child marriage was correlated with droughts and floods. However, because of the high risk of bias across studies, differences in the vulnerability of the populations studied, and differences in the definitions of extreme weather used, we are unable to draw broad conclusions about whether extreme weather events increase or decrease the rate of child marriage. We discuss common biases across studies and provide suggestions for improving the strength of evidence on this topic.

Suggested Citation

  • Anna Palmer & Aïché Danioko & Alissa Koski, 2025. "The effect of extreme weather events on the frequency of child marriage: A systematic review of the evidence," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 1686-1699, April.
  • Handle: RePEc:wly:sustdv:v:33:y:2025:i:2:p:1686-1699
    DOI: 10.1002/sd.3201
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.3201
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.3201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lucia Corno & Nicole Hildebrandt & Alessandra Voena, 2020. "Age of Marriage, Weather Shocks, and the Direction of Marriage Payments," Econometrica, Econometric Society, vol. 88(3), pages 879-915, May.
    2. Madhulika Khanna & Nishtha Kochhar, 2023. "Do marriage markets respond to a natural disaster? The impact of flooding of the Kosi river in India," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(4), pages 2241-2276, October.
    3. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    4. Corno, Lucia & Voena, Alessandra, 2023. "Child marriage as informal insurance: Empirical evidence and policy simulations," Journal of Development Economics, Elsevier, vol. 162(C).
    5. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    6. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    7. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    8. repec:plo:pone00:0138237 is not listed on IDEAS
    9. Magda Tsaneva, 2020. "The Effect of Weather Variability on Child Marriage in Bangladesh," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(8), pages 1346-1359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corales, Aurora M. & Santos, Royette C. & Banayo, Niño M.C. & Bueno, Crisanta S. & Johnson, David E. & Kato, Yoichiro, 2019. "Dissemination pathways for drought-tolerant rice cultivars: A farmer-participatory evaluation in the Philippines," World Development Perspectives, Elsevier, vol. 15(C), pages 1-1.
    2. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    3. Su, Zheng’e & Zhao, Jin & Marek, Thomas H. & Liu, Ke & Harrison, Matthew Tom & Xue, Qingwu, 2022. "Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Bader Alhafi Alotaibi & Azhar Abbas & Raza Ullah & Roshan K. Nayak & Muhammad I. Azeem & Hazem S. Kassem, 2021. "Climate Change Concerns of Saudi Arabian Farmers: The Drivers and Their Role in Perceived Capacity Building Needs for Adaptation," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    5. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    6. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    8. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," Working Papers hal-04064759, HAL.
    9. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    10. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    11. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    13. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    14. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    15. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    16. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Hugues Champeaux & Elsa Gautrain & Karine Marazyan, 2024. "Men’s premarital migration and marriage payments: Evidence from Indonesia," DeFiPP Working Papers 2402, University of Namur, Development Finance and Public Policies.
    18. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Bláhová, Monika & Fischer, Milan & Poděbradská, Markéta & Štěpánek, Petr & Balek, Jan & Zahradníček, Pavel & Kudláčková, Lucie & Žalud, Zdeněk & Trnka, Miroslav, 2024. "Testing the reliability of soil moisture forecast for its use in agriculture," Agricultural Water Management, Elsevier, vol. 304(C).
    20. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:33:y:2025:i:2:p:1686-1699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.