IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i6p1397-1413.html
   My bibliography  Save this article

Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data

Author

Listed:
  • Patrick Murigu Kamau Njage
  • Clementine Henri
  • Pimlapas Leekitcharoenphon
  • Michel‐Yves Mistou
  • Rene S. Hendriksen
  • Tine Hald

Abstract

Next‐generation sequencing (NGS) data present an untapped potential to improve microbial risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of the MRA models do not account for differences in survivability and virulence among strains. The potential of machine learning algorithms for predicting the risk/health burden at the population level while inputting large and complex NGS data was explored with Listeria monocytogenes as a case study. Listeria data consisted of a percentage similarity matrix from genome assemblies of 38 and 207 strains of clinical and food origin, respectively. Basic Local Alignment (BLAST) was used to align the assemblies against a database of 136 virulence and stress resistance genes. The outcome variable was frequency of illness, which is the percentage of reported cases associated with each strain. These frequency data were discretized into seven ordinal outcome categories and used for supervised machine learning and model selection from five ensemble algorithms. There was no significant difference in accuracy between the models, and support vector machine with linear kernel was chosen for further inference (accuracy of 89% [95% CI: 68%, 97%]). The virulence genes FAM002725, FAM002728, FAM002729, InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB, lmo2026, and FAM003296 were important predictors of higher frequency of illness. InlF was uniquely truncated in the sequence type 121 strains. Most important risk predictor genes occurred at highest prevalence among strains from ready‐to‐eat, dairy, and composite foods. We foresee that the findings and approaches described offer the potential for rethinking the current approaches in MRA.

Suggested Citation

  • Patrick Murigu Kamau Njage & Clementine Henri & Pimlapas Leekitcharoenphon & Michel‐Yves Mistou & Rene S. Hendriksen & Tine Hald, 2019. "Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1397-1413, June.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:6:p:1397-1413
    DOI: 10.1111/risa.13239
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13239
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    3. Régis Pouillot* & Karin Hoelzer & Yuhuan Chen & Sherri B. Dennis, 2015. "Listeria monocytogenes Dose Response Revisited—Incorporating Adjustments for Variability in Strain Virulence and Host Susceptibility," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 90-108, January.
    4. Enrico Glaab & Jaume Bacardit & Jonathan M Garibaldi & Natalio Krasnogor, 2012. "Using Rule-Based Machine Learning for Candidate Disease Gene Prioritization and Sample Classification of Cancer Gene Expression Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    6. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    7. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    8. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    9. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    10. María Adelaida Gómez & Ashton Trey Belew & Deninson Alejandro Vargas & Lina Giraldo-Parra & Neal Alexander & David E. Rebellón-Sánchez & Theresa A. Alexander & Najib M. El-Sayed, 2025. "Innate biosignature of treatment failure in human cutaneous leishmaniasis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    11. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    12. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    13. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    15. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    16. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    17. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    18. repec:plo:pone00:0083057 is not listed on IDEAS
    19. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    20. repec:plo:pone00:0185380 is not listed on IDEAS
    21. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    22. Siyu Han & Shixiang Yu & Mengya Shi & Makoto Harada & Jianhong Ge & Jiesheng Lin & Cornelia Prehn & Agnese Petrera & Ying Li & Flora Sam & Giuseppe Matullo & Jerzy Adamski & Karsten Suhre & Christian , 2025. "LEOPARD: missing view completion for multi-timepoint omics data via representation disentanglement and temporal knowledge transfer," Nature Communications, Nature, vol. 16(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:6:p:1397-1413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.