IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i1p180-194.html
   My bibliography  Save this article

Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System

Author

Listed:
  • Min Ouyang
  • Hui Tian
  • Zhenghua Wang
  • Liu Hong
  • Zijun Mao

Abstract

This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large‐scale systems. This article introduces three SLFs models: node centered SLFs, district‐based SLFs, and circle‐shaped SLFs, and proposes a SLFs‐induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs‐induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions.

Suggested Citation

  • Min Ouyang & Hui Tian & Zhenghua Wang & Liu Hong & Zijun Mao, 2019. "Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 180-194, January.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:1:p:180-194
    DOI: 10.1111/risa.12708
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12708
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zio, E. & Golea, L.R. & Rocco S., C.M., 2012. "Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 172-177.
    2. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    3. Adachi, Takao & Ellingwood, Bruce R., 2008. "Serviceability of earthquake-damaged water systems: Effects of electrical power availability and power backup systems on system vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 78-88.
    4. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    5. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    6. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    7. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    8. Terje Aven, 2011. "On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 515-522, April.
    9. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle, 2015. "Operational Models of Infrastructure Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 562-586, April.
    10. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tao & Rong, Lili, 2022. "Spatiotemporally complementary effect of high-speed rail network on robustness of aviation network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 95-114.
    2. Yiming Cao & Hengxing Lan & Langping Li, 2023. "Disaster Risk Assessment for Railways: Challenges and a Sustainable Promising Solution Based on BIM+GIS," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    3. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    4. Zhang, Hui & Xu, Min & Ouyang, Min, 2024. "A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Ouyang, Min & Liu, Chuang & Wu, Shengyu, 2020. "Worst-case vulnerability assessment and mitigation model of urban utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    8. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    9. Caroline A Johnson & Allison C Reilly & Roger Flage & Seth D Guikema, 2021. "Characterizing the robustness of power-law networks that experience spatially-correlated failures," Journal of Risk and Reliability, , vol. 235(3), pages 403-415, June.
    10. Nikolaos Argyris & Valentina Ferretti & Simon French & Seth Guikema & Gilberto Montibeller, 2019. "Advances in Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 1-8, January.
    11. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    12. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    2. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    3. Ouyang, Min & Liu, Chuang & Wu, Shengyu, 2020. "Worst-case vulnerability assessment and mitigation model of urban utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    5. Ouyang, Min & Xu, Min & Zhang, Chi & Huang, Shitong, 2017. "Mitigating electric power system vulnerability to worst-case spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 144-154.
    6. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    7. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    8. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    9. Wang, Shuliang & Stanley, H. Eugene & Gao, Yachun, 2018. "A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 21-29.
    10. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    11. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    12. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    13. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    14. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    15. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    16. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    18. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    19. Xiao Feng & Shiwei He & Xuchao Chen & Guangye Li, 2021. "Mitigating the vulnerability of an air-high-speed railway transportation network: From the perspective of predisruption response," Journal of Risk and Reliability, , vol. 235(3), pages 474-490, June.
    20. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:1:p:180-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.