IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i8p1634-1655.html
   My bibliography  Save this article

Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems

Author

Listed:
  • Kiswendsida Abel Ouedraogo
  • Julie Beugin
  • El‐Miloudi El‐Koursi
  • Joffrey Clarhaut
  • Dominique Renaux
  • Frederic Lisiecki

Abstract

The work in the article presents the development of an application guide based on feedback and comments stemming from various railway actors on their practices of SIL allocation to railway safety‐related functions. The initial generic methodology for SIL allocation has been updated to be applied to railway rolling stock safety‐related functions in order to solve the SIL concept application issues. Various actors dealing with railway SIL allocation problems are the intended target of the methodology; its principles will be summarized in this article with a focus on modifications and precisions made in order to establish a practical guide for railway safety authorities. The methodology is based on the flowchart formalism used in CSM (common safety method) European regulation. It starts with the use of quantitative safety requirements, particularly tolerable hazard rates (THR). THR apportioning rules are applied. On the one hand, the rules are related to classical logical combinations of safety‐related functions preventing hazard occurrence. On the other hand, to take into account technical conditions (last safety weak link, functional dependencies, technological complexity, etc.), specific rules implicitly used in existing practices are defined for readjusting some THR values. SIL allocation process based on apportioned and validated THR values is finally illustrated through the example of “emergency brake” subsystems. Some specific SIL allocation rules are also defined and illustrated.

Suggested Citation

  • Kiswendsida Abel Ouedraogo & Julie Beugin & El‐Miloudi El‐Koursi & Joffrey Clarhaut & Dominique Renaux & Frederic Lisiecki, 2018. "Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1634-1655, August.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:8:p:1634-1655
    DOI: 10.1111/risa.12972
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12972
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beugin, J. & Renaux, D. & Cauffriez, L., 2007. "A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1686-1700.
    2. John R. Etherton, 2007. "Industrial Machine Systems Risk Assessment: A Critical Review of Concepts and Methods," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 71-82, February.
    3. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    4. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    5. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    6. Xu, Ming & Chen, Tao & Yang, Xianhui, 2012. "The effect of parameter uncertainty on achieved safety integrity of safety system," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 15-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    2. Ding, Long & Wang, Hong & Kang, Kai & Wang, Kai, 2014. "A novel method for SIL verification based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 36-45.
    3. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    4. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    5. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    6. Khalil, Y.F., 2019. "New statistical formulations for determination of qualification test plans of safety instrumented systems (SIS) subject to low/high operational demands," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 196-209.
    7. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    8. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    9. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    10. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    11. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
    12. Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    14. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    15. Oliveira, Luiz Fernando & Abramovitch, Rafael Nelson, 2010. "Extension of ISA TR84.00.02 PFD equations to KooN architectures," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 707-715.
    16. Jocelyn, Sabrina & Baudoin, James & Chinniah, Yuvin & Charpentier, Philippe, 2014. "Feasibility study and uncertainties in the validation of an existing safety-related control circuit with the ISO 13849-1:2006 design standard," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 104-112.
    17. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    18. John Etherton & Bruce Main & Dennis Cloutier & Wayne Christensen, 2008. "Reducing Risk on Machinery: A Field Evaluation Pilot Study of Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 711-721, June.
    19. Wu, Shengnan & Zhang, Laibin & Barros, Anne & Zheng, Wenpei & Liu, Yiliu, 2018. "Performance analysis for subsea blind shear ram preventers subject to testing strategies," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 281-298.
    20. Hoseyni, Seyed Mohsen & Pourgol-Mohammad, Mohammad & Tehranifard, Ali Abbaspour & Yousefpour, Faramarz, 2014. "A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 22-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:8:p:1634-1655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.