IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i4p426-436.html
   My bibliography  Save this article

Probability of failure on demand of safety systems: impact of partial test distribution

Author

Listed:
  • Florent Brissaud
  • Anne Barros
  • Christophe Bérenguer

Abstract

In accordance with the IEC  61508 functional safety standard, safety-related systems operating in a low demand mode need to be proof tested to reveal any ‘dangerous undetected failures’. Proof tests may be full (i.e. complete) or partial (i.e. incomplete), depending on their ability to detect all the system failures or only a part of them. Following a partial test, some failures may then be left latent until the full test, whereas after a full test (and overhaul), the system is restored to an as-good-as-new condition. A partial-test policy is defined by the efficiency of the partial tests, and the number and distribution (periodic or non-periodic) of the partial tests in the full test time interval. Non-approximate equations are introduced for probability of failure on demand (PFD) assessment of a M oo N architecture (i.e. k -out-of- n : G) systems subject to partial and full tests. Partial tests may occur at different time instants (periodic or not) until the full test. The time-dependent, average, and maximum system unavailability (PFD(t), PFDavg, and PFDmax) are investigated, and the impact of the partial test distribution on average and maximum system unavailability are analysed, according to system architecture, component failure rates, and partial test efficiency.

Suggested Citation

  • Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:4:p:426-436
    DOI: 10.1177/1748006X12448142
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X12448142
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X12448142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Manoj & Verma, A.K. & Srividya, A., 2008. "Modeling demand rate and imperfect proof-test and analysis of their effect on system safety," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1720-1729.
    2. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    3. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    4. Lundteigen, Mary Ann & Rausand, Marvin, 2009. "Architectural constraints in IEC 61508: Do they have the intended effect?," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 520-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    2. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    3. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    2. Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    4. Oliveira, Luiz Fernando & Abramovitch, Rafael Nelson, 2010. "Extension of ISA TR84.00.02 PFD equations to KooN architectures," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 707-715.
    5. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    6. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    7. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    8. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    10. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    11. Rachid Sal & Rachid Nait-Said & Mouloud Bourareche, 2017. "Dealing with uncertainty in effect analysis of test strategies on safety instrumented system performance," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1945-1958, November.
    12. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    13. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    14. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    15. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    16. Kiswendsida Abel Ouedraogo & Julie Beugin & El‐Miloudi El‐Koursi & Joffrey Clarhaut & Dominique Renaux & Frederic Lisiecki, 2018. "Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1634-1655, August.
    17. Shin, Sung Min & Jeon, In Seop & Kang, Hyun Gook, 2015. "Surveillance test and monitoring strategy for the availability improvement of standby equipment using age-dependent model," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 100-106.
    18. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    19. Lundteigen, Mary Ann & Rausand, Marvin & Utne, Ingrid Bouwer, 2009. "Integrating RAMS engineering and management with the safety life cycle of IEC 61508," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1894-1903.
    20. Jocelyn, Sabrina & Baudoin, James & Chinniah, Yuvin & Charpentier, Philippe, 2014. "Feasibility study and uncertainties in the validation of an existing safety-related control circuit with the ISO 13849-1:2006 design standard," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 104-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:4:p:426-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.