IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i5p947-961.html
   My bibliography  Save this article

Public Response to a Near‐Miss Nuclear Accident Scenario Varying in Causal Attributions and Outcome Uncertainty

Author

Listed:
  • Jinshu Cui
  • Heather Rosoff
  • Richard S. John

Abstract

Many studies have investigated public reactions to nuclear accidents. However, few studies focused on more common events when a serious accident could have happened but did not. This study evaluated public response (emotional, cognitive, and behavioral) over three phases of a near‐miss nuclear accident. Simulating a loss‐of‐coolant accident (LOCA) scenario, we manipulated (1) attribution for the initial cause of the incident (software failure vs. cyber terrorist attack vs. earthquake), (2) attribution for halting the incident (fail‐safe system design vs. an intervention by an individual expert vs. a chance coincidence), and (3) level of uncertainty (certain vs. uncertain) about risk of a future radiation leak after the LOCA is halted. A total of 773 respondents were sampled using a 3 × 3 × 2 between‐subjects design. Results from both MANCOVA and structural equation modeling (SEM) indicate that respondents experienced more negative affect, perceived more risk, and expressed more avoidance behavioral intention when the near‐miss event was initiated by an external attributed source (e.g., earthquake) compared to an internally attributed source (e.g., software failure). Similarly, respondents also indicated greater negative affect, perceived risk, and avoidance behavioral intentions when the future impact of the near‐miss incident on people and the environment remained uncertain. Results from SEM analyses also suggested that negative affect predicted risk perception, and both predicted avoidance behavior. Affect, risk perception, and avoidance behavior demonstrated high stability (i.e., reliability) from one phase to the next.

Suggested Citation

  • Jinshu Cui & Heather Rosoff & Richard S. John, 2018. "Public Response to a Near‐Miss Nuclear Accident Scenario Varying in Causal Attributions and Outcome Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 947-961, May.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:5:p:947-961
    DOI: 10.1111/risa.12920
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12920
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine H. Tinsley & Robin L. Dillon & Matthew A. Cronin, 2012. "How Near-Miss Events Amplify or Attenuate Risky Decision Making," Management Science, INFORMS, vol. 58(9), pages 1596-1613, September.
    2. Roger E. Kasperson & Ortwin Renn & Paul Slovic & Halina S. Brown & Jacque Emel & Robert Goble & Jeanne X. Kasperson & Samuel Ratick, 1988. "The Social Amplification of Risk: A Conceptual Framework," Risk Analysis, John Wiley & Sons, vol. 8(2), pages 177-187, June.
    3. Howard Kunreuther & Douglas Easterling & William Desvousges & Paul Slovic, 1990. "Public Attitudes Toward Siting a High‐Level Nuclear Waste Repository in Nevada," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 469-484, December.
    4. James Steiger & Alexander Shapiro & Michael Browne, 1985. "On the multivariate asymptotic distribution of sequential Chi-square statistics," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 253-263, September.
    5. Tsunoda Katsuya, 2001. "Public Response to the Tokai Nuclear Accident," Risk Analysis, John Wiley & Sons, vol. 21(6), pages 1039-1046, December.
    6. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    7. Laura N. Rickard, 2014. "Perception of Risk and the Attribution of Responsibility for Accidents," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 514-528, March.
    8. Teun Terpstra, 2011. "Emotions, Trust, and Perceived Risk: Affective and Cognitive Routes to Flood Preparedness Behavior," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1658-1675, October.
    9. Michael Siegrist & Bernadette Sütterlin, 2014. "Human and Nature‐Caused Hazards: The Affect Heuristic Causes Biased Decisions," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1482-1494, August.
    10. Timothy L. McDaniels, 1988. "Chernobyl's Effects on the Perceived Risks of Nuclear Power: A Small Sample Test," Risk Analysis, John Wiley & Sons, vol. 8(3), pages 457-461, September.
    11. Heather Rosoff & Richard S. John & Fynnwin Prager, 2012. "Flu, Risks, and Videotape: Escalating Fear and Avoidance," Risk Analysis, John Wiley & Sons, vol. 32(4), pages 729-743, April.
    12. Slovic, Paul & Finucane, Melissa L. & Peters, Ellen & MacGregor, Donald G., 2007. "The affect heuristic," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1333-1352, March.
    13. Robert Meyer, 2012. "Failing to learn from experience about catastrophes: The case of hurricane preparedness," Journal of Risk and Uncertainty, Springer, vol. 45(1), pages 25-50, August.
    14. Michael K. Lindell & Ronald W. Perry, 1990. "Effects of the Chernobyl Accident on Public Perceptions of Nuclear Plant Accident Risks," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 393-399, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhipeng Zhou & Chaozhi Li & Chuanmin Mi & Lingfei Qian, 2019. "Exploring the Potential Use of Near-Miss Information to Improve Construction Safety Performance," Sustainability, MDPI, vol. 11(5), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinshu Cui & Heather Rosoff & Richard S. John, 2016. "Cumulative Response to Sequences of Terror Attacks Varying in Frequency and Trajectory," Risk Analysis, John Wiley & Sons, vol. 36(12), pages 2272-2284, December.
    2. Mengtian Zhao & Heather Rosoff & Richard S. John, 2019. "Media Disaster Reporting Effects on Public Risk Perception and Response to Escalating Tornado Warnings: A Natural Experiment," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 535-552, March.
    3. Yu‐Ru Lin & Drew Margolin & Xidao Wen, 2017. "Tracking and Analyzing Individual Distress Following Terrorist Attacks Using Social Media Streams," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1580-1605, August.
    4. Cristóbal De La Maza & Alex Davis & Cleotilde Gonzalez & Inês Azevedo, 2019. "Understanding Cumulative Risk Perception from Judgments and Choices: An Application to Flood Risks," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 488-504, February.
    5. Michael Siegrist & Joseph Árvai, 2020. "Risk Perception: Reflections on 40 Years of Research," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2191-2206, November.
    6. Yang, Ya Ling, 2020. "Comparison of public perception and risk management decisions of aircraft noise near Taoyuan and Kaohsiung International Airports," Journal of Air Transport Management, Elsevier, vol. 85(C).
    7. Liu, Peng & Xu, Zhigang & Zhao, Xiangmo, 2019. "Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 354-369.
    8. Shay-Wei Choon & Hway-Boon Ong & Siow-Hooi Tan, 2019. "Does risk perception limit the climate change mitigation behaviors?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1891-1917, August.
    9. Sanya Carley & Stephen Ansolabehere & David M Konisky, 2019. "Are all electrons the same? Evaluating support for local transmission lines through an experiment," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-16, July.
    10. Alexa Tanner & Ryan Reynolds, 2020. "The near-miss of a tsunami and an emergency evacuation: the post-exposure effects on future emergency preparedness and evacuation intentions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1679-1693, November.
    11. Bart Vyncke & Tanja Perko & Baldwin Van Gorp, 2017. "Information Sources as Explanatory Variables for the Belgian Health‐Related Risk Perception of the Fukushima Nuclear Accident," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 570-582, March.
    12. Liu, Peng & Zhang, Yawen & He, Zhen, 2019. "The effect of population age on the acceptable safety of self-driving vehicles," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 341-347.
    13. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    14. Robyn S. Wilson & Adam Zwickle & Hugh Walpole, 2019. "Developing a Broadly Applicable Measure of Risk Perception," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 777-791, April.
    15. P. Marijn Poortvliet & Anne Marike Lokhorst, 2016. "The Key Role of Experiential Uncertainty when Dealing with Risks: Its Relationships with Demand for Regulation and Institutional Trust," Risk Analysis, John Wiley & Sons, vol. 36(8), pages 1615-1629, August.
    16. Robert Tobias, 2016. "Communication About Micropollutants in Drinking Water: Effects of the Presentation and Psychological Processes," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 2011-2026, October.
    17. Sebastian Seebauer & Philipp Babcicky, 2020. "The Sources of Belief in Personal Capability: Antecedents of Self‐Efficacy in Private Adaptation to Flood Risk," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1967-1982, October.
    18. Jinshu Cui & Heather Rosoff & Richard S. John, 2017. "A Polytomous Item Response Theory Model for Measuring Near-Miss Appraisal as a Psychological Trait," Decision Analysis, INFORMS, vol. 14(2), pages 75-86, June.
    19. Yongbao Zhang & Jianwu Chen & Xingfei Wei & Xiang Wu, 2022. "Development and Validation of the Haze Risk Perception Scale and Influencing Factor Scale—A Study Based on College Students in Beijing," IJERPH, MDPI, vol. 19(8), pages 1-21, April.
    20. Vivianne H. M. Visschers & Michael Siegrist, 2013. "How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 333-347, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:5:p:947-961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.