IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i2p333-347.html
   My bibliography  Save this article

How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster

Author

Listed:
  • Vivianne H. M. Visschers
  • Michael Siegrist

Abstract

Major nuclear accidents, such as the recent accident in Fukushima, Japan, have been shown to decrease the public's acceptance of nuclear power. However, little is known about how a serious accident affects people's acceptance of nuclear power and the determinants of acceptance. We conducted a longitudinal study (N= 790) in Switzerland: one survey was done five months before and one directly after the accident in Fukushima. We assessed acceptance, perceived risks, perceived benefits, and trust related to nuclear power stations. In our model, we assumed that both benefit and risk perceptions determine acceptance of nuclear power. We further hypothesized that trust influences benefit and risk perceptions and that trust before a disaster relates to trust after a disaster. Results showed that the acceptance and perceptions of nuclear power as well as its trust were more negative after the accident. In our model, perceived benefits and risks determined the acceptance of nuclear power stations both before and after Fukushima. Trust had strong effects on perceived benefits and risks, at both times. People's trust before Fukushima strongly influenced their trust after the accident. In addition, perceived benefits before Fukushima correlated with perceived benefits after the accident. Thus, the nuclear accident did not seem to have changed the relations between the determinants of acceptance. Even after a severe accident, the public may still consider the benefits as relevant, and trust remains important for determining their risk and benefit perceptions. A discussion of the benefits of nuclear power seems most likely to affect the public's acceptance of nuclear power, even after a nuclear accident.

Suggested Citation

  • Vivianne H. M. Visschers & Michael Siegrist, 2013. "How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 333-347, February.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:2:p:333-347
    DOI: 10.1111/j.1539-6924.2012.01861.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2012.01861.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2012.01861.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John C. Besley, 2012. "Does Fairness Matter in the Context of Anger About Nuclear Energy Decision Making?," Risk Analysis, John Wiley & Sons, vol. 32(1), pages 25-38, January.
    2. Michael Greenberg & Heather Barnes Truelove, 2011. "Energy Choices and Risk Beliefs: Is It Just Global Warming and Fear of a Nuclear Power Plant Accident?," Risk Analysis, John Wiley & Sons, vol. 31(5), pages 819-831, May.
    3. Stephen C. Whitfield & Eugene A. Rosa & Amy Dan & Thomas Dietz, 2009. "The Future of Nuclear Power: Value Orientations and Risk Perception," Risk Analysis, John Wiley & Sons, vol. 29(3), pages 425-437, March.
    4. Michael Siegrist & George Cvetkovich, 2000. "Perception of Hazards: The Role of Social Trust and Knowledge," Risk Analysis, John Wiley & Sons, vol. 20(5), pages 713-720, October.
    5. Michael Siegrist & George Cvetkovich & Claudia Roth, 2000. "Salient Value Similarity, Social Trust, and Risk/Benefit Perception," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 353-362, June.
    6. Michael Siegrist, 2000. "The Influence of Trust and Perceptions of Risks and Benefits on the Acceptance of Gene Technology," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 195-204, April.
    7. Greenberg, Michael, 2009. "Energy sources, public policy, and public preferences: Analysis of US national and site-specific data," Energy Policy, Elsevier, vol. 37(8), pages 3242-3249, August.
    8. Timothy L. McDaniels, 1988. "Chernobyl's Effects on the Perceived Risks of Nuclear Power: A Small Sample Test," Risk Analysis, John Wiley & Sons, vol. 8(3), pages 457-461, September.
    9. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    10. Mattias J. Viklund, 2003. "Trust and Risk Perception in Western Europe: A Cross‐National Study," Risk Analysis, John Wiley & Sons, vol. 23(4), pages 727-738, August.
    11. Carmen Keller & Vivianne Visschers & Michael Siegrist, 2012. "Affective Imagery and Acceptance of Replacing Nuclear Power Plants," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 464-477, March.
    12. Michael K. Lindell & Ronald W. Perry, 1990. "Effects of the Chernobyl Accident on Public Perceptions of Nuclear Plant Accident Risks," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 393-399, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Kuhika & Nowlin, Matthew C. & Ripberger, Joseph T. & Jenkins-Smith, Hank C. & Silva, Carol L., 2019. "Tracking the nuclear ‘mood’ in the United States: Introducing a long term measure of public opinion about nuclear energy using aggregate survey data," Energy Policy, Elsevier, vol. 133(C).
    2. Huang, Lei & He, Ruoying & Yang, Qianqi & Chen, Jin & Zhou, Ying & Hammitt, James K. & Lu, Xi & Bi, Jun & Liu, Yang, 2018. "The changing risk perception towards nuclear power in China after the Fukushima nuclear accident in Japan," Energy Policy, Elsevier, vol. 120(C), pages 294-301.
    3. Rinscheid, Adrian & Wüstenhagen, Rolf, 2018. "Divesting, Fast and Slow: Affective and Cognitive Drivers of Fading Voter Support for a Nuclear Phase-Out," Ecological Economics, Elsevier, vol. 152(C), pages 51-61.
    4. Roh, Seungkook & Lee, Jin Won, 2018. "Differentiated effects of risk perception dimensions on nuclear power acceptance in South Korea," Energy Policy, Elsevier, vol. 122(C), pages 727-735.
    5. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    6. Uji, Azusa & Prakash, Aseem & Song, Jaehyun, 2021. "Does the “NIMBY syndrome” undermine public support for nuclear power in Japan?," Energy Policy, Elsevier, vol. 148(PA).
    7. Qi, Wen-Hui & Qi, Ming-Liang & Ji, Ya-Min, 2020. "The effect path of public communication on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 144(C).
    8. Bjoern Hagen & Adenike Opejin & K. David Pijawka, 2022. "Risk Perceptions and Amplification Effects over Time: Evaluating Fukushima Longitudinal Surveys," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    9. Ho, Shirley S. & Oshita, Tsuyoshi & Looi, Jiemin & Leong, Alisius D. & Chuah, Agnes S.F., 2019. "Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: A qualitative approach," Energy Policy, Elsevier, vol. 127(C), pages 259-268.
    10. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    11. Xu, Min & Liu, Yong & Cui, Caiyun & Xia, Bo & Ke, Yongjian & Skitmore, Martin, 2023. "Social acceptance of NIMBY facilities: A comparative study between public acceptance and the social license to operate analytical frameworks," Land Use Policy, Elsevier, vol. 124(C).
    12. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2019. "Public perceptions and acceptance of nuclear energy in China: The role of public knowledge, perceived benefit, perceived risk and public engagement," Energy Policy, Elsevier, vol. 126(C), pages 352-360.
    13. McCauley, Darren & Brown, Antje & Rehner, Robert & Heffron, Raphael & van de Graaff, Shashi, 2018. "Energy justice and policy change: An historical political analysis of the German nuclear phase-out," Applied Energy, Elsevier, vol. 228(C), pages 317-323.
    14. Wang, Fan & Gu, Jibao & Wu, Jianlin, 2020. "Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China," Energy Policy, Elsevier, vol. 145(C).
    15. Kânoğlu-Özkan, Dilge Güldehen & Soytaş, Uğur, 2022. "The social acceptance of shale gas development: Evidence from Turkey," Energy, Elsevier, vol. 239(PC).
    16. Hsiao, Chih-Tung & Liu, Chung-Shu & Chang, Dong-Shang & Chen, Chun-Cheng, 2018. "Dynamic modeling of the policy effect and development of electric power systems: A case in Taiwan," Energy Policy, Elsevier, vol. 122(C), pages 377-387.
    17. Xia, Dongqin & Li, Yazhou & He, Yanling & Zhang, Tingting & Wang, Yongliang & Gu, Jibao, 2019. "Exploring the role of cultural individualism and collectivism on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 132(C), pages 208-215.
    18. Vafadarnikjoo, Amin & Tavana, Madjid & Chalvatzis, Konstantinos & Botelho, Tiago, 2022. "A socio-economic and environmental vulnerability assessment model with causal relationships in electric power supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    19. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2020. "How and when does information publicity affect public acceptance of nuclear energy?," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Siegrist, 2021. "Trust and Risk Perception: A Critical Review of the Literature," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 480-490, March.
    2. Ho, Shirley S. & Oshita, Tsuyoshi & Looi, Jiemin & Leong, Alisius D. & Chuah, Agnes S.F., 2019. "Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: A qualitative approach," Energy Policy, Elsevier, vol. 127(C), pages 259-268.
    3. Judith I. M. de Groot & Elisa Schweiger & Iljana Schubert, 2020. "Social Influence, Risk and Benefit Perceptions, and the Acceptability of Risky Energy Technologies: An Explanatory Model of Nuclear Power Versus Shale Gas," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1226-1243, June.
    4. Xia, Dongqin & Li, Yazhou & He, Yanling & Zhang, Tingting & Wang, Yongliang & Gu, Jibao, 2019. "Exploring the role of cultural individualism and collectivism on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 132(C), pages 208-215.
    5. Strazzera, Elisabetta & Meleddu, Daniela & Atzori, Rossella, 2022. "A hybrid choice modelling approach to estimate the trade-off between perceived environmental risks and economic benefits," Ecological Economics, Elsevier, vol. 196(C).
    6. Siegrist, Michael & Sütterlin, Bernadette & Keller, Carmen, 2014. "Why have some people changed their attitudes toward nuclear power after the accident in Fukushima?," Energy Policy, Elsevier, vol. 69(C), pages 356-363.
    7. Visschers, Vivianne H.M. & Siegrist, Michael, 2012. "Fair play in energy policy decisions: Procedural fairness, outcome fairness and acceptance of the decision to rebuild nuclear power plants," Energy Policy, Elsevier, vol. 46(C), pages 292-300.
    8. Wang, Yu & Gu, Jibao & Wu, Jianlin, 2020. "Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit," Energy Policy, Elsevier, vol. 140(C).
    9. Wang, Fan & Gu, Jibao & Wu, Jianlin, 2020. "Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China," Energy Policy, Elsevier, vol. 145(C).
    10. Peng Liu & Run Yang & Zhigang Xu, 2019. "Public Acceptance of Fully Automated Driving: Effects of Social Trust and Risk/Benefit Perceptions," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 326-341, February.
    11. Han, Y. & Lam, J. & Guo, P. & Gou, Z., 2019. "What Predicts Government Trustworthiness in Cross-border HK-Guangdong Nuclear Safety Emergency Governance?," Cambridge Working Papers in Economics 1989, Faculty of Economics, University of Cambridge.
    12. John C. Besley & Sang‐Hwa Oh, 2014. "The Impact of Accident Attention, Ideology, and Environmentalism on American Attitudes Toward Nuclear Energy," Risk Analysis, John Wiley & Sons, vol. 34(5), pages 949-964, May.
    13. Abdulla, A. & Vaishnav, P. & Sergi, B. & Victor, D.G., 2019. "Limits to deployment of nuclear power for decarbonization: Insights from public opinion," Energy Policy, Elsevier, vol. 129(C), pages 1339-1346.
    14. Seungkook Roh & Jin Won Lee & Qingchang Li, 2019. "Effects of Rank-Ordered Feature Perceptions of Energy Sources on the Choice of the Most Acceptable Power Plant for a Neighborhood: An Investigation Using a South Korean Nationwide Sample," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    15. Michael Siegrist & Joseph Árvai, 2020. "Risk Perception: Reflections on 40 Years of Research," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2191-2206, November.
    16. Vladimir M. Cvetković & Adem Öcal & Yuliya Lyamzina & Eric K. Noji & Neda Nikolić & Goran Milošević, 2021. "Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits," Energies, MDPI, vol. 14(9), pages 1-19, April.
    17. Norifumi Tsujikawa & Shoji Tsuchida & Takamasa Shiotani, 2016. "Changes in the Factors Influencing Public Acceptance of Nuclear Power Generation in Japan Since the 2011 Fukushima Daiichi Nuclear Disaster," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 98-113, January.
    18. Jobin, Marilou & Siegrist, Michael, 2018. "We choose what we like – Affect as a driver of electricity portfolio choice," Energy Policy, Elsevier, vol. 122(C), pages 736-747.
    19. Mueller, Christoph Emanuel, 2020. "Examining the inter-relationships between procedural fairness, trust in actors, risk expectations, perceived benefits, and attitudes towards power grid expansion projects," Energy Policy, Elsevier, vol. 141(C).
    20. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:2:p:333-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.