IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v64y2017i8p677-693.html
   My bibliography  Save this article

Scheduling combat logistics force replenishments at sea for the US Navy

Author

Listed:
  • Gerald G. Brown
  • Walter C. DeGrange
  • Wilson L. Price
  • Anton A. Rowe

Abstract

The Replenishment at Sea Planner (RASP) is saving the U.S. Navy millions of dollars a year by reducing fuel consumption of its Combat Logistics Force (CLF). CLF shuttle supply ships deploy from ports to rendezvous with underway U.S. combatants and those of coalition partners. The overwhelming commodity transferred is fuel, ship‐to‐ship by hoses, while other important packaged goods and spare parts are high‐lined, or helicoptered between ships. The U.S. Navy is organized in large areas of responsibility called numbered fleets, and within each of these a scheduler must promulgate a daily forecast of CLF shuttle operations. The operational planning horizon extends out several weeks, or as far into the future as we can forecast demand. We solve RASP with integer linear optimization and a purpose‐built heuristic. RASP plans Replenishment‐at‐Sea (RAS) events with 4‐hour (Navy watch) time fidelity. For five years, RASP has served two purposes: (1) it helps schedulers generate a daily schedule and animates it using Google Earth, and (2) it automates reports command‐to‐ship messages that are essential to keep this complex logistics system operating.

Suggested Citation

  • Gerald G. Brown & Walter C. DeGrange & Wilson L. Price & Anton A. Rowe, 2017. "Scheduling combat logistics force replenishments at sea for the US Navy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 677-693, December.
  • Handle: RePEc:wly:navres:v:64:y:2017:i:8:p:677-693
    DOI: 10.1002/nav.21780
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21780
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerald G. Brown & W. Matthew Carlyle, 2008. "Optimizing the US Navy's combat logistics force," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 800-810, December.
    2. J E Korsvik & K Fagerholt & G Laporte, 2010. "A tabu search heuristic for ship routing and scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 594-603, April.
    3. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    4. Gerald G. Brown & Robert F. Dell & Robert A. Farmer, 1996. "Scheduling Coast Guard District Cutters," Interfaces, INFORMS, vol. 26(2), pages 59-72, April.
    5. Gerald G. Brown & Robert F. Dell & R. Kevin Wood, 1997. "Optimization and Persistence," Interfaces, INFORMS, vol. 27(5), pages 15-37, October.
    6. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    7. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    8. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    9. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    10. Gerald G. Brown & Kelly J. Cormican & Siriphong Lawphongpanich & Daniel B. Widdis, 1997. "Optimizing submarine berthing with a persistence incentive," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 301-318, June.
    11. Alan Washburn & Gerald G. Brown, 2016. "An exact method for finding shortest routes on a sphere, avoiding obstacles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 374-385, August.
    12. G. B. Dantzig & D. R. Fulkerson, 1954. "Minimizing the number of tankers to meet a fixed schedule," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(3), pages 217-222, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Qinghe & Meng, Qiang & Chou, Mabel C., 2021. "Optimizing voyage charterparty (VCP) arrangement: Laytime negotiation and operations coordination," European Journal of Operational Research, Elsevier, vol. 291(1), pages 263-270.
    2. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    3. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    4. Ryuichi Shibasaki & Takayuki Iijima & Taiji Kawakami & Takashi Kadono & Tatsuyuki Shishido, 2017. "Network assignment model of integrating maritime and hinterland container shipping: application to Central America," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 234-273, June.
    5. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    6. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    7. Mulder, J. & Dekker, R., 2016. "Optimization in container liner shipping," Econometric Institute Research Papers EI2016-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Chen, Kang & Chen, Dongxu & Sun, Xueshan & Yang, Zhongzhen, 2016. "Container Ocean-transportation System Design with the factors of demand fluctuation and choice inertia of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 267-281.
    9. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    10. Harilaos N. Psaraftis, 2019. "Ship routing and scheduling: the cart before the horse conjecture," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 111-124, March.
    11. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    12. Lee, Chung-Yee & Lee, Hau L. & Zhang, Jiheng, 2015. "The impact of slow ocean steaming on delivery reliability and fuel consumption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 176-190.
    13. Christiansen, Marielle & Hellsten, Erik & Pisinger, David & Sacramento, David & Vilhelmsen, Charlotte, 2020. "Liner shipping network design," European Journal of Operational Research, Elsevier, vol. 286(1), pages 1-20.
    14. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    15. Beullens, Patrick & Ge, Fangsheng & Hudson, Dominic, 2023. "The economic ship speed under time charter contract—A cash flow approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    16. Hellsten, Erik Orm & Sacramento, David & Pisinger, David, 2022. "A branch-and-price algorithm for solving the single-hub feeder network design problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 902-916.
    17. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    18. Mutlu, Fatih & Msakni, Mohamed K. & Yildiz, Hakan & Sönmez, Erkut & Pokharel, Shaligram, 2016. "A comprehensive annual delivery program for upstream liquefied natural gas supply chain," European Journal of Operational Research, Elsevier, vol. 250(1), pages 120-130.
    19. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    20. Mulder, J. & Dekker, R., 2016. "Will liner ships make fewer port calls per route?," Econometric Institute Research Papers EI2016-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:64:y:2017:i:8:p:677-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.