IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v44y1997i4p301-318.html
   My bibliography  Save this article

Optimizing submarine berthing with a persistence incentive

Author

Listed:
  • Gerald G. Brown
  • Kelly J. Cormican
  • Siriphong Lawphongpanich
  • Daniel B. Widdis

Abstract

Submarine berthing plans reserve mooring locations for inbound U.S. Navy nuclear submarines prior to their port entrance. Once in port, submarines may be shifted to different berthing locations to allow them to better receive services they require or to make way for other shifted vessels. However, submarine berth shifting is expensive, labor intensive, and potentially hazardous. This article presents an optimization model for submarine berth planning and demonstrates it with Naval Submarine Base, San Diego. After a berthing plan has been approved and published, changed requests for services, delays, and early arrival of inbound submarines are routine events, requiring frequent revisions. To encourage trust in the planning process, the effect on the solution of revisions in the input is kept small by incorporating a persistence incentive in the optimization model. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 301–318, 1997.

Suggested Citation

  • Gerald G. Brown & Kelly J. Cormican & Siriphong Lawphongpanich & Daniel B. Widdis, 1997. "Optimizing submarine berthing with a persistence incentive," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 301-318, June.
  • Handle: RePEc:wly:navres:v:44:y:1997:i:4:p:301-318
    DOI: 10.1002/(SICI)1520-6750(199706)44:43.0.CO;2-A
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199706)44:43.0.CO;2-A
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199706)44:43.0.CO;2-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerald G. Brown & Robert F. Dell & Robert A. Farmer, 1996. "Scheduling Coast Guard District Cutters," Interfaces, INFORMS, vol. 26(2), pages 59-72, April.
    2. Gerald G. Brown & Siriphong Lawphongpanich & Katie Podolak Thurman, 1994. "Optimizing ship berthing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan O. Bausch & Gerald G. Brown & David Ronen, 1998. "Scheduling short-term marine transport of bulk products," Maritime Policy & Management, Taylor & Francis Journals, vol. 25(4), pages 335-348, October.
    2. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    3. Zhichao Zheng & Karthik Natarajan & Chung-Piaw Teo, 2016. "Least Squares Approximation to the Distribution of Project Completion Times with Gaussian Uncertainty," Operations Research, INFORMS, vol. 64(6), pages 1406-1421, December.
    4. Golias, Mihalis & Boile, Maria & Theofanis, Sotirios, 2007. "The berth allocation problem: a formulation reflecting time Window service deadlines," 48th Annual Transportation Research Forum, Boston, Massachusetts, March 15-17, 2007 207826, Transportation Research Forum.
    5. Gerardo Gonzalez & Christopher Richards & Alexandra Newman, 2018. "Optimal Course Scheduling for United States Air Force Academy Cadets," Interfaces, INFORMS, vol. 48(3), pages 217-234, June.
    6. Ahmet Silav & Orhan Karasakal & Esra Karasakal, 2019. "Bi‐objective missile rescheduling for a naval task group with dynamic disruptions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 596-615, October.
    7. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    8. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    9. Wei Yang & Itır Karaesmen & Pınar Keskinocak & Sridhar Tayur, 2008. "Aircraft and crew scheduling for fractional ownership programs," Annals of Operations Research, Springer, vol. 159(1), pages 415-431, March.
    10. Thierry Petit & Andrew C. Trapp, 2019. "Enriching Solutions to Combinatorial Problems via Solution Engineering," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 429-444, July.
    11. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    12. Alexandra M. Newman & Martin Weiss, 2013. "A Survey of Linear and Mixed-Integer Optimization Tutorials," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 26-38, September.
    13. Gerald G. Brown & Walter C. DeGrange & Wilson L. Price & Anton A. Rowe, 2017. "Scheduling combat logistics force replenishments at sea for the US Navy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 677-693, December.
    14. Marjorie Cone Saur & Kaleigh Starr & Mark Husted & Alexandra M. Newman, 2012. "Scheduling Softball Series in the Rocky Mountain Athletic Conference," Interfaces, INFORMS, vol. 42(3), pages 296-309, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya Xu & Qiushuang Chen & Xiongwen Quan, 2012. "Robust berth scheduling with uncertain vessel delay and handling time," Annals of Operations Research, Springer, vol. 192(1), pages 123-140, January.
    2. Michael R. Wagner & Zinovy Radovilsky, 2012. "Optimizing Boat Resources at the U.S. Coast Guard: Deterministic and Stochastic Models," Operations Research, INFORMS, vol. 60(5), pages 1035-1049, October.
    3. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    4. Günay Uzun & Metin Dağdeviren & Mehmet Kabak, 2016. "Determining the Distribution of Coast Guard Vessels," Interfaces, INFORMS, vol. 46(4), pages 297-314, August.
    5. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    6. Gerald G. Brown & Walter C. DeGrange & Wilson L. Price & Anton A. Rowe, 2017. "Scheduling combat logistics force replenishments at sea for the US Navy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 677-693, December.
    7. Burak Cankaya & Ezra Wari & Berna Eren Tokgoz, 2019. "Practical approaches to chemical tanker scheduling in ports: a case study on the Port of Houston," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 559-575, December.
    8. Javier Salmerón & Jeffrey Kline & Greta Spitz Densham, 2011. "Optimizing Schedules for Maritime Humanitarian Cooperative Engagements from a United States Navy Sea Base," Interfaces, INFORMS, vol. 41(3), pages 238-253, June.
    9. Dan O. Bausch & Gerald G. Brown & David Ronen, 1998. "Scheduling short-term marine transport of bulk products," Maritime Policy & Management, Taylor & Francis Journals, vol. 25(4), pages 335-348, October.
    10. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    11. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    12. Hsien-Pin Hsu & Tai-Lin Chiang & Chia-Nan Wang & Hsin-Pin Fu & Chien-Chang Chou, 2019. "A Hybrid GA with Variable Quay Crane Assignment for Solving Berth Allocation Problem and Quay Crane Assignment Problem Simultaneously," Sustainability, MDPI, vol. 11(7), pages 1-21, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:44:y:1997:i:4:p:301-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.