IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v54y2007i6p692-701.html
   My bibliography  Save this article

Dynamic lot‐sizing model with production time windows

Author

Listed:
  • Hark‐Chin Hwang

Abstract

We consider a dynamic lot‐sizing model with production time windows where each of n demands has earliest and latest production due dates and it must be satisfied during the given time window. For the case of nonspeculative cost structure, an O(nlogn) time procedure is developed and it is shown to run in O(n) when demands come in the order of latest production due dates. When the cost structure is somewhat general fixed plus linear that allows speculative motive, an optimal procedure with O(T4) is proposed where T is the length of a planning horizon. Finally, for the most general concave production cost structure, an optimal procedure with O(T5) is designed. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007

Suggested Citation

  • Hark‐Chin Hwang, 2007. "Dynamic lot‐sizing model with production time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 692-701, September.
  • Handle: RePEc:wly:navres:v:54:y:2007:i:6:p:692-701
    DOI: 10.1002/nav.20246
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20246
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jaruphongsa, Wikrom & Cetinkaya, Sila & Lee, Chung-Yee, 2004. "Warehouse space capacity and delivery time window considerations in dynamic lot-sizing for a simple supply chain," International Journal of Production Economics, Elsevier, vol. 92(2), pages 169-180, November.
    2. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    3. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    4. van Hoesel, Stan & Wagelmans, Albert & Moerman, Bram, 1994. "Using geometric techniques to improve dynamic programming algorithms for the economic lot-sizing problem and extensions," European Journal of Operational Research, Elsevier, vol. 75(2), pages 312-331, June.
    5. Chung-Yee Lee & Sila Çetinkaya & Albert P. M. Wagelmans, 2001. "A Dynamic Lot-Sizing Model with Demand Time Windows," Management Science, INFORMS, vol. 47(10), pages 1384-1395, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    2. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    3. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    4. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    5. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.
    6. Hark‐Chin Hwang & Wilco van den Heuvel, 2012. "Improved algorithms for a lot‐sizing problem with inventory bounds and backlogging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 244-253, April.
    7. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    8. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    9. Yongpei Guan, 2011. "Stochastic lot-sizing with backlogging: computational complexity analysis," Journal of Global Optimization, Springer, vol. 49(4), pages 651-678, April.
    10. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    11. Azaron, Amir & Tang, Ou & Tavakkoli-Moghaddam, Reza, 2009. "Dynamic lot sizing problem with continuous-time Markovian production cost," International Journal of Production Economics, Elsevier, vol. 120(2), pages 607-612, August.
    12. Fink, Jiří & Hurink, Johann L., 2015. "Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses," European Journal of Operational Research, Elsevier, vol. 242(2), pages 644-650.
    13. Okhrin, Irena & Richter, Knut, 2011. "The linear dynamic lot size problem with minimum order quantity," International Journal of Production Economics, Elsevier, vol. 133(2), pages 688-693, October.
    14. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    15. Lai, Minghui & Cai, Xiaoqiang & Li, Xiang, 2017. "Mechanism design for collaborative production-distribution planning with shipment consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 137-159.
    16. A.P.M. Wagelmans & A.E. Gerodimos, 1999. "Improved Dynamic Programs for Some Batching Problems involving the Maximum Lateness Criterion," Tinbergen Institute Discussion Papers 99-036/4, Tinbergen Institute.
    17. Guiffrida, Alfred L. & Nagi, Rakesh, 2006. "Cost characterizations of supply chain delivery performance," International Journal of Production Economics, Elsevier, vol. 102(1), pages 22-36, July.
    18. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Hoesel, C. P. M. Van & Wagelmans, A. P. M., 2000. "Parametric analysis of setup cost in the economic lot-sizing model without speculative motives," International Journal of Production Economics, Elsevier, vol. 66(1), pages 13-22, June.
    20. Jean-Philippe Gayon & Guillaume Massonnet & Christophe Rapine & Gautier Stauffer, 2017. "Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 854-875, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:54:y:2007:i:6:p:692-701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.