IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i2p644-650.html
   My bibliography  Save this article

Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses

Author

Listed:
  • Fink, Jiří
  • Hurink, Johann L.

Abstract

This paper studies planning problems for a group of heating systems which supply the hot water demand for domestic use in houses. These systems (e.g. gas or electric boilers, heat pumps or microCHPs) use an external energy source to heat up water and store this hot water for supplying the domestic demands. The latter allows to some extent a decoupling of the heat production from the heat demand. We focus on the situation where each heating system has its own demand and buffer and the supply of the heating systems is coming from a common source. In practice, the common source may lead to a coupling of the planning for the group of heating systems. On the one hand, the external supply of the energy for heating up the water may have to be bought by an energy supplier on e.g. a day-ahead market. As the price of energy varies over time on such markets, this supplier is interested in a planning which minimizes the total cost to supply the heating systems with energy. On the other hand, the bottleneck to supply the energy also may be the capacity of the distribution system (e.g. the electricity networks or the gas network). As this has to be dimensioned for the maximal consumption, in this case it is important to minimize the maximal peak. The two mentioned coupling constraints for supplying the energy for producing the heat, lead to two different objectives for the planning of the group of heating systems: minimizing cost and minimizing the maximal peak. In this paper, we study the algorithmic complexity of the two resulting planning problems. For minimizing costs, a classical dynamic programming approach is given which solves the problem in polynomial time. On the other hand, we prove that minimizing the maximal peak is NP-hard and discuss why this problem is hard. Based on this, we show that this problem becomes polynomial if all heating systems have the same consumption of energy when turned on. Finally, we present a Fix Parameter Tractable (FPT) algorithm for minimizing the maximal peak which is linear in the number of time intervals.

Suggested Citation

  • Fink, Jiří & Hurink, Johann L., 2015. "Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses," European Journal of Operational Research, Elsevier, vol. 242(2), pages 644-650.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:644-650
    DOI: 10.1016/j.ejor.2014.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    2. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    3. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    4. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    5. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    6. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    7. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    8. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    9. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    10. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Fink & Richard P. Van Leeuwen, 2016. "Earliest Deadline Control of a Group of Heat Pumps with a Single Energy Source," Energies, MDPI, vol. 9(7), pages 1-16, July.
    2. Ströhle, Philipp & Flath, Christoph M., 2016. "Local matching of flexible load in smart grids," European Journal of Operational Research, Elsevier, vol. 253(3), pages 811-824.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    2. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    3. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    4. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    5. Goisque, Guillaume & Rapine, Christophe, 2017. "An efficient algorithm for the 2-level capacitated lot-sizing problem with identical capacities at both levels," European Journal of Operational Research, Elsevier, vol. 261(3), pages 918-928.
    6. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    7. van Hoesel, C.P.M. & Romeijn, H.E. & Romero Morales, M.D. & Wagelmans, A., 2002. "Polynomial time algorithms for some multi-level lot-sizing problems with production capacities," Research Memorandum 018, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    9. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    10. Jean-Philippe Gayon & Guillaume Massonnet & Christophe Rapine & Gautier Stauffer, 2017. "Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 854-875, August.
    11. van den Heuvel, W.J. & Wagelmans, A.P.M., 2003. "A geometric algorithm to solve the NI/G/NI/ND capacitated lot-sizing problem in O(T2) time," Econometric Institute Research Papers EI 2003-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    13. Farhat, Mlouka & Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie, 2019. "Lot sizing problem with batch ordering under periodic buyback contract and lost sales," International Journal of Production Economics, Elsevier, vol. 208(C), pages 500-511.
    14. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    15. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P.M. Wagelmans, 2002. "Polynomial Time Algorithms for Some Multi-Level Lot-Sizing Problems with Production Capacities," Tinbergen Institute Discussion Papers 02-066/4, Tinbergen Institute.
    16. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    17. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    18. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    19. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    20. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:644-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.