IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v36y1989i4p399-418.html
   My bibliography  Save this article

The inventory packing problem

Author

Listed:
  • Nicholas G. Hall

Abstract

We study the problem of finding the minimum number of identical storage areas required to hold n items for which demand is known and constant. The replenishments of the items within a single storage area may be time phased so as to minimize the maximum total storage capacity required at any time. This is the inventory‐packing problem, which can be considered as a variant of the well‐known bin‐packing problem, where one constraint is nonlinear. We study the worst‐case performance of six heuristics used for that earlier problem since the recognition version of the inventory‐packing problem is shown to be NP complete. In addition, we describe several new heuristics developed specifically for the inventory‐packing problem, and also study their worst‐case performance. Any heuristic which only opens a bin when an item will not fit in any (respectively, the last) open bin needs, asymptotically, no more than 25/12 (resp., 9/4) times the optimal number of bins. Improved performance bounds are obtainable if the range from which item sizes are taken is known to be restricted. Extensive computational testing indicates that the solutions delivered by these heuristics are, for most problems, very close to optimal in value.

Suggested Citation

  • Nicholas G. Hall, 1989. "The inventory packing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 399-418, August.
  • Handle: RePEc:wly:navres:v:36:y:1989:i:4:p:399-418
    DOI: 10.1002/1520-6750(198908)36:43.0.CO;2-M
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198908)36:43.0.CO;2-M
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198908)36:43.0.CO;2-M?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominique J. Nocturne, 1973. "Note--Economic Ordering Frequency for Several Items Jointly Replenished," Management Science, INFORMS, vol. 19(9), pages 1093-1096, May.
    2. Salah E. Elmaghraby, 1978. "The Economic Lot Scheduling Problem (ELSP): Review and Extensions," Management Science, INFORMS, vol. 24(6), pages 587-598, February.
    3. Frank T. Shu, 1971. "Economic Ordering Frequency for two Items Jointly Replenished," Management Science, INFORMS, vol. 17(6), pages 406-410, February.
    4. Marshall L. Fisher, 1980. "Worst-Case Analysis of Heuristic Algorithms," Management Science, INFORMS, vol. 26(1), pages 1-17, January.
    5. Hall, Nicholas G., 1988. "Separate vs. joint replenishment policies with maximum storage requirement costs," European Journal of Operational Research, Elsevier, vol. 36(2), pages 180-185, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurt R. Heidelberg & Gregory S. Parnell & James E. Ames, 1998. "Automated air load planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(8), pages 751-768, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamar Cohen-Hillel & Liron Yedidsion, 2018. "The Periodic Joint Replenishment Problem Is Strongly 𝒩𝒫-Hard," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1269-1289, November.
    2. Tsai, Chi-Yang & Yeh, Szu-Wei, 2008. "A multiple objective particle swarm optimization approach for inventory classification," International Journal of Production Economics, Elsevier, vol. 114(2), pages 656-666, August.
    3. Ramesh Bollapragada & Uday Rao, 1999. "Single-Stage Resource Allocation and Economic Lot Scheduling on Multiple, Nonidentical Production Lines," Management Science, INFORMS, vol. 45(6), pages 889-904, June.
    4. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    5. Nicholas G. Hall, 1988. "A multi‐item EOQ model with inventory cycle balancing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(3), pages 319-325, June.
    6. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    7. Heuts, R.M.J. & Nederstigt, P. & Roebroek, W. & Selen, W.J., 1992. "Multi-product cycling with packaging in the process industry," Other publications TiSEM 533d6bbb-e61a-4e4b-a44e-1, Tilburg University, School of Economics and Management.
    8. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    9. A. Kimms, 1997. "Demand shuffle—A method for multilevel proportional lot sizing and scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 319-340, June.
    10. Robert R. Inman & Philip C. Jones & Guillermo M. Gallego, 1991. "Economic lot scheduling of fully loaded processes with external setups," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 699-713, October.
    11. Yao, Ming-Jong & Lin, Jen-Yen & Lin, Yu-Liang & Fang, Shu-Cherng, 2020. "An integrated algorithm for solving multi-customer joint replenishment problem with districting consideration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    12. Hein, Fanny & Almeder, Christian, 2016. "Quantitative insights into the integrated supply vehicle routing and production planning problem," International Journal of Production Economics, Elsevier, vol. 177(C), pages 66-76.
    13. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    14. Bongjin Gim & Min-Hong Han, 1997. "Economic scheduling of products with N components on a single machine," European Journal of Operational Research, Elsevier, vol. 96(3), pages 570-577, February.
    15. Chang, Ping-Teng & Yao, Ming-Jong & Huang, Shih-Fen & Chen, Chia-Tsung, 2006. "A genetic algorithm for solving a fuzzy economic lot-size scheduling problem," International Journal of Production Economics, Elsevier, vol. 102(2), pages 265-288, August.
    16. David M. Markowitz & Martin I. Reiman & Lawrence M. Wein, 2000. "The Stochastic Economic Lot Scheduling Problem: Heavy Traffic Analysis of Dynamic Cyclic Policies," Operations Research, INFORMS, vol. 48(1), pages 136-154, February.
    17. Van den broecke, Frank & Van Landeghem, Hendrik & Aghezzaf, El-Houssaine, 2008. "Implementing a near-optimal solution for the multi-stage, multi-product capacitated lot-sizing problem by rolling out a cyclical production plan," International Journal of Production Economics, Elsevier, vol. 112(1), pages 121-137, March.
    18. Menezes, Mozart B.C. & Jalali, Hamed & Lamas, Alejandro, 2021. "One too many: Product proliferation and the financial performance in manufacturing," International Journal of Production Economics, Elsevier, vol. 242(C).
    19. Rappold, James A. & Yoho, Keenan D., 2014. "Setting safety stocks for stable rotation cycle schedules," International Journal of Production Economics, Elsevier, vol. 156(C), pages 146-158.
    20. Martin I. Reiman & Lawrence M. Wein, 1998. "Dynamic Scheduling of a Two-Class Queue with Setups," Operations Research, INFORMS, vol. 46(4), pages 532-547, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:36:y:1989:i:4:p:399-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.